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ABSTRACT 

Wireless communication and its applications have been growing rapidly in recent years. 

The driving force behind this development is the introduction of Digital Signal Processing 

(DSP) in the wireless communication world. While DSP functionality is highly integrated 

using Complementary Metal-Oxide-Semiconductor (CMOS) technology, current Front-End 

(FE) Integrated Circuits (ICs) depend on a mixture of semiconductor technologies, from 

GaAs to SiGe, making integration of the whole communication system on a single chip 

almost impossible. With the recent advance in CMOS technology, Radio Frequency (RF) 

CMOS IC design provides a potential solution for System-On-Chip (SOC). 

This dissertation explores the design of a fully integrated CMOS Low-Noise Amplifier 

(LNA) for an IEEE 802.11a wireless communication receiver. A new design methodology is 

presented for optimization of feedback to achieve simultaneous noise and gain match. Two-

port noise theory is extended to multi-port noise analysis for a three-port-to-two-port noise 

transformation. This approach is applied in the design of a 5.3-GHz LNA in a CMOS 0.18-

um technology. The measurement gives averagely forward gain of 5.2 dB, input and output 

impedance matching of -9.3 dB and -8.9 dB respectively, isolation of -42.8 dB, estimated 

noise figure of 4.8 dB at frequency of 5.3-GHz with current consumption of 4.2-mA from a 

1.5-V supply. A novel process-variation insensitive network is proposed to realize the on-

chip impedance matching that is immune to process variation. The proposed network utilizes 

precision matching capacitors to achieve a zero sensitivity to process variation. Its 

performance is demonstrated in Monte Carlo simulations. 
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Immersive virtual environments have been moving from primarily research test-beds to 

practical systems used as research and development tools in many science domains. 

However, current technologies impose limitations on how the users move and interact in 

these environments. For example, in the C2 system at Iowa State University (ISU), which is a 

3-sided and a floor projection environment, many devices are tethered. The tethered cables 

put a significant physical constraint on where and how users can move in this semi-closed 

projection cube. 

In the current C6 system, which is an enclosed 6-sided immersion environment, the 

cables are replaced with wireless links with the help of recent advancements in the wireless 

communication world. The wireless solution, however, brings in other design considerations. 

Wireless systems are susceptible to noise and interference as compared to the wired system. 

This leads to issues of reliability and latency in the virtual reality (VR) environment. For the 

immersive VR system to respond promptly to the user's interaction, the data transmission 

through the wireless links should satisfy a number of specifications regarding speed, latency, 

reliability, etc. There are now many commercial wireless devices used in the C6 system, with 

operation bands ranging from DC magnetic field to 2.4 GHz. Not all of these off-shelf 

products are customized to meet the data transmission requirements in the C6 system. 

As more devices are involved in the C6 system, more wireless links will be introduced, 

leading to a more crowded medium for wireless communication. Each individual wireless 
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link is an interference to the rest. One link can be strong enough to disable some of the other 

wireless links. In addition, each wireless product consumes a certain amount of power. More 

devices mean more power consumption that directly leads to either a heavier user-carried 

battery or a shorter lifetime of operation. Therefore, there exists a need to customize the 

wireless design in the current C6 system. 

This dissertation will study the feasibility of a single highly integrated low-power high

speed wireless solution that can be used as a replacement for the current wireless systems and 

can be extended for future use as well. 

1.2 Scope of the Dissertation 

Wireless communications and their application have been growing rapidly in recent 

years. The driving force behind this development is the introduction of digital signal 

processing (DSP) in the wireless communication world. While DSP functionality is highly 

integrated using CMOS technology, current front-end analog circuits depend on a mixture of 

semiconductor technologies, from GaAs to SiGe, making integration of the whole 

communication system on a single chip almost impossible. With recent advancements in 

CMOS technology, Radio Frequency (RF) CMOS Integrated Circuit (IC) design provides a 

potential solution for System-On-Chip (SOC). 

This dissertation will present a low-noise amplifier (LNA) for a wireless communication 

receiver compatible with IEEE 802.1 la protocol as part of a wireless solution for the current 

C6 immersive system. Receiver link budget analysis and system design will be presented in 

Chapter 2. Multi-port noise analysis extended from the two-port noise theory will be 

discussed in Chapter 3. Chapter 4 will focus on a new design methodology of the low-noise 
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amplifier employing the presented multi-port noise analysis. Measurement and testing results 

will be listed and discussed in this chapter as well. A novel impedance matching network that 

is insensitive to process variation will be analyzed in Chapter 5. Chapter 6 will summarize 

and conclude the current work and identify future work. 
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CHAPTER 2. SYSTEM DESIGN FOR IEEE 802.11A APPLICATIONS 

2.1 Introduction 

For replacement of current wireless links in the C6 system, the proposed wireless 

solution should have the following features: high speed, low power, low latency and 

compatibility. 

There are currently two competing wireless specifications, Bluetooth and IEEE 802.11, 

for short-range wireless applications. Bluetooth was initiated to replace the cables from the 

computers to printers, network jacks, etc. Currently, it has evolved into a personal wireless 

network protocol with a coverage area in the general vicinity of the user. IEEE 802.11 was 

initially a specification for Wireless Local Access Networks (WLANs) [2.1]. 

The Bluetooth specifications are aimed to be a low-cost, power-efficient, single radio-

chip solution in the 2.4-GHz industrial, scientific and medical (ISM) band. The original 

proposed modulation rate is 1M symbol per second. The symbol rate is equal to the bit rate 

because the modulation scheme is Gaussian Frequency Shifting Keying (GFSK). So the 

maximum available bit rate is 1 Mbps. In addition, the network structure utilizes a star-

shaped configuration in which the device at the center performs the role of master and all 

other devices, up to seven, operate as slaves. This structure is called piconet. The star-shaped 

configuration puts further limits on the data rate [2.2]. Furthermore, the 2.4-GHz band suffers 

from many other interference sources, such as microwave ovens. Therefore, the Bluetooth 

protocol is not a suitable candidate for the C6 system. 
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IEEE 802.11a, an extension of the IEEE 802.11 specifications in the 5-GHz unlicensed 

national information infrastructure (U-NII) bands, provides a variety of data rates ranging 

from 6 Mbps to 54 Mbps [2.3]. Acceptable latency thresholds can be achieved [2.1]. Power 

consumption can be optimized with customized design for this global standard. 

By comparing current wireless communication specifications, it can be seen that the 

IEEE 802.11a protocol provides a feasible wireless solution to the C6 system. Slight 

modifications are necessary to make it meet the special needs of low power and low latency 

imposed by the VR system. 

The following sections will discuss the analysis and design of a receiver system for the 

IEEE 802.11a specification. 

2.2 Receiver Link Budget Analysis 

To derive requirements for the receiver system and its building blocks, the following 

specifications from the IEEE 802.11a protocol are used with customized modifications. 

Lower and Middle U-NII Bands: 8 Carriers In 200 MHz/20 MHz Spacing 
30 MHz 30 MHz 

5180 5200 5220 5240 5260 5280 5300 5320 5150 
Lower Band Edge 

Upper U-NII Bands: 4 Carriers in 100 MHz/20 MHz Spacing 

20 MHz 20 MHz 

5725 
Lower Band Edge 

5745 5765 5785 5805 5825 
Upper Band Edge 

Figure 2-1. U-NII band frequency channel plan for the United States [2.3]. 
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As can be seen in Figure 2-1, the U-NII band has three sub bands. The lower band is 

from 5.15-GHz to 5.25-GHz; the middle band is from 5.25-GHz to 5.35-GHz, and the upper 

band is from 5.725-GHz to 5.825-GHz. The lower and middle bands are used since eight 

channels are provided. The channel bandwidth (BW) is 20 MHz. 

Table 2-1 below summarizes the specifications used to conduct the link budget analysis. 

Table 2-1. Receiver specifications compatible to IEEE 802.11a for the C6 system [2.3] 

Specifications Value Description 

IE
E

E
 s

pe
c.

 

f 5.15 to 5.35 GHz Frequency range 

IE
E

E
 s

pe
c.

 BW 20 MHz Bandwidth 

IE
E

E
 s

pe
c.

 

DataR 18 Mbps Data rate 

IE
E

E
 s

pe
c.

 

Modulation QPSK Modulation scheme 

IE
E

E
 s

pe
c.

 

PRX(min) -77 dBm Minimum sensitivity 

IE
E

E
 s

pe
c.

 

PlXfrnax) 23 dBm Maximum transmitted power IE
E

E
 s

pe
c.

 

PADJ -50 dBm Adjacent channel power 

C
6 

sp
ec

. 

BER Bit error rate 

C
6 

sp
ec

. EB/N0 10.5 dB Bit energy to noise ratio 

C
6 

sp
ec

. 

R 20 m Transmission range 

C
6 

sp
ec

. 

FadeM 20 dB Fading margin 

C
6 

sp
ec

. 

^ Gr 2.41 dB TX antenna gain (dipole) C
6 

sp
ec

. 

G% ^ 2.41 dB RX antenna gain (dipole) 

The specifications for the C6 system are to provide a data rate of 18 Mbps. To achieve a 

BER of 10"5 with a QPSK modulation scheme, the EB/N„ is found to be at least 12.6 dB [2.4]. 

The transmission range, which is the distance between the transmitter and the receiver, is 

assumed to be 20 m that will provide sufficient coverage for the C6 system of which the cube 

is a 10 by 10 by 10-foot arena. 

The following calculations for the link budget analysis are based on [2.5]. 

The first step is to find the free space loss, LFS, with a range of 20 m as 
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L f s  =20* log  
10 

An* R 

~~T~ 
= 20*logl0 

= 20* log 
10 

4;r*20*5.35e9 

3e8 

(2-1) 
= 73.0oB 

As can been in Figure 2-2, at 2.4 GHz the indoor space loss is about 3 dB higher than the 

free space loss at a distance of 20 m (65.6 ft). It is assumed at 5 GHz that the indoor space 

loss will be about 3 to 6 dB higher at the same distance. 6 dB is used for a better design 

margin. So the total loss, Lt, is found to be 79.0 dB. 

CÛ 

130 

120 

110 

v) 100 V? 
Q 
^ 90 

£ 80 

70 

60 

50 

\b IDi DC \R 

GÂ m P* • m 
Ï 

W 
:R 

m 
EE 

m 
SI % 

• ' 

CE 
W 

:R 
m 
EE 

m 
SI % 

• ' 

CE 

/ 
20 40 60 80 100 120 140 160 180 200 220 240 

RANGE (FT) 

Figure 2-2. Estimated indoor propagation losses at 2.4 GHz [2.5]. 

Using this total loss the minimum transmitted power is found to be 

•^rx(min) = ̂ W(min) - GT - GR + L, + FadeM 

= -11 dBm - 2A\dBi - 2.416®/ + 19dB + 20dB = 17.2 dBm 
(2-2) 

This minimum transmitted power is less than the maximum power (23 dBm) permitted 

by the FCC regulation in this band. 
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To calculate the maximum received power at the input of the receiver, the free space loss 

at a minimum distance of 2-m between the transmitter and the receiver is 

f 4?r * 2 * 5 1 
4sw.)=20*logl0 " ^ =53.0 dS (2-5) 

V 3eo j = 

Using the minimum loss and the maximum transmitter power (FCC regulations) the 

maximum input power of the receiver is 

^RX(max) ~ ^7% (max) + + GR ~ Lps{mm) — FddeM 

= 23dBm + 2A\dBi + 2AldBi-53dB -20dB = -45.0 dBm (2"6) 

So the receiver must be able to cope with a signal with power level up to -45 dBm. 

The signal-to-noise ratio (SNR) is calculated to be 

SNR = ^- + 10*logl(/ °ataR X 

I ^ / 

^18e6^ 
(2-7) 

= 10 AdB + 10* log 10 
20e6 

= 10.0 dB 

Using this SNR, the input referred noise figure (NF) for the receiver is found to be 

=^(^)-Mm+rr- io*iogio(a?n 

--11 dB-10.0(S© +1 lAdBm / Hz-10* log 10(20e6) = 14.0 dB ^ 

To avoid inter-modulation problems with adjacent cannels, the minimum input referred 

third order intercept point (IIP3) is found 

PAnr ~Pnvtm;„\ + SNR 

(2-9) 

IIP3 = PADJ + -ADJ—^(min) 

SOdBm + - 50dBm ~ (~lldBm) + WAdB = - 31.0 dBm 
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2.3 Receiver Architecture Design 

The receiver architecture is chosen to be a super-heterodyne structure, as illustrated in 

Figure 2-3. This traditional structure will provide more design flexibility than a direct 

conversion structure, although some off-chip IF filters are necessary. 

Mixer 

BPF LPF -> VGA 5.15-5.35 GHz 

20 MHz 
Data Mixer 

-Kg)—H SPLITTER BPF LNA BPF 0°/90 

4.1-4.3 GHz 

LO BPF VGA -» 

20 MHz 

LPF 

Data 

Figure 2-3. A super-heterodyne receiver structure for IEEE 802.11a applications. 

The proposed frequency plan for the dual down-conversion is shown in Figure 2-4. The 

second local oscillator frequency is chosen to be a quarter of the first local oscillator 

frequency, i.e., LO2 = LOi/4. Thus only one frequency synthesizer is needed. 

LOz = 1.036-1.064 GHz 

À 

LO1 =4.144-4.256 GHz 

A RF = 5.15-5.35 GHz 

IF = 1.036-1.064 GHz 

IM = 3.108-3.162 GHz 

DC 1.0 2.0 3.0 4.0 5.0 Freq (GHz) 

Figure 2-4. Proposed frequency plan for dual down-conversion. 



www.manaraa.com

10 

Table 2-2. Frequency plan for dual down-conversion 

Frequency Channel spacing 
RF signal 5.150-5.350 GHz 20 MHz 
LOi signal 4.144-4.256 GHz 16 MHz 
LO2 signal 1.036- 1.064 GHz 4 MHz 

The noise figure and IIP3 given above are distributed among the front-end components 

of filters, amplifiers and mixers, etc. The following equations were used to find the input 

referred contributions of NF and IIP3. The specifications for each building block are listed in 

Table 2-3. 

^=^+^^4-^^ + ̂ ^ -  + . .+  (2-10)  
C/j Cjj 0"2 (jj(j2&3 Cj] (J2 • • • Cr^ 

IIP3in 7ZP3, im2 IIP3, IIP34 IIP3 

Table 2-3. Circuit specifications 

BPF 
(1) 

LNA BPF 
(2) 

Mixer 
(1) 

Splitter BPF 
(3) 

Mixer 
(2) 

LPF VGA Total Spec. 

Gain (dB) -3.0 15.0 -3.0 6.0 -3.0 -3.0 8.0 -2.0 62.0 77 
NF (dB) 3.0 3.0 3.0 8.0 3.0 3.0 10.0 2.0 10.0 7.7 14.0 

IIP3 (dBm) -20.0 -15.0 -10.0 -24.8 -31.0 

Using the gain values in Table 2-3, the dynamic range needed from the variable-gain 

amplifier (VGA) can be found. In doing this calculation it is assumed that the ADC input 

requires a 0-dB signal. 

G VGA, max) = ̂ ADC ~ ̂ Mf(min) — RF— Gain 

= OdB - (-7IdBrtï) -15dB=62.0 dB (2"12) 

GyGA(min) = ^ADC ~ ̂ RXimax) ~ RF _ Gain ^ 

= OdB - (~45dBm) -15o® = 30.0 dB 
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DR VGA — G vCA (max) ^W^(min) 

— 62dB — 30dB — 32.0 dB 

2.4 System Simulations 

The proposed receiver structure and specifications were implemented in SystemView™, 

a communication system simulator. The block diagram of the simulator in SystemView™ is 

shown in Figure 2-5. The simulator consists of three parts: Transmitter (TX), Channel (Chn), 

Receiver (RX). 

r 

TX I 

RX BPF(2) Mixer(2) LPF VGA 
Channel 

BPF(l) LNA BPF(2) Mixcr( 

LO 

TX_Q 

LO 

Figure 2-5. Simulation diagram in SystemView. 

The TX is an ideal transmitter to generate in-phase and quadrature bit streams for testing 

purposes. Two pseudo-noise (PN) coders generate two 18-Mbps digital signals that are 

modulated by the quadrature modulator to the desired frequencies. These two signals are then 

summed for transmission through the channel. 

The channel is modeled using a thermal noise generator and an attenuator. The thermal 

noise generator adds white additive Gaussian noise (WAGN) to the transmitted signal to 

simulate a desired SNR. The noise level is determined by its internal setting of noise 

temperature. The attenuator is used to model the path loss of the channel. 
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The RX has in-phase and quadrature signal paths. First, the signal passes through the 

BPF(l) that limits the bandwidth to 5.0-5.5 GHz. Each filter is followed by an attenuator to 

model the filter loss. The antenna model is absorbed into the attenuator in the channel model. 

After the BPF(l), the signal is amplified by the LNA to a certain power level. Then it passes 

through the BPF(2) for harmonic removal before being processed by the active mixer(l). An 

splitter is necessary to separate the RF signal into two signal paths for individual signal 

processing. The active mixer(2) down-converts the RF signal to a base-band signal. A LPF 

then rejects the adjacent channels by 35 dB to minimize interference. The last component in 

the simulator is a VGA used to amplify the signal to the desired level to meet the dynamic 

requirement of the ADC. 

Channel 4 with a center frequency of 5.240 GHz is chosen for simulation purposes. 

Accordingly, LOi= 4.192 GHz, LO2 = 1.048 GHz. The simulation results are shown below in 

Figure 2-6 and Figure 2-7. 

1 • 

—75T 

1 . 

(d) 

Figure 2-6. Simulation results (a) Tx_I data, (b) Tx_Q data, (c) Rx_I data, (d) Rx_Q data. 

M 

(c) 



www.manaraa.com

13 

1) Base-band 

signal 

2) Transmitted 

signal 

3) After LNA 

1 . !  " | ÏKj i |  

'PIHMM 
H , 5.24 GHz T SNR=10.0(B 

IM i _ 5.24 GHzX 

4) After Mixer(l) 

5) After Mixer(2) 

11.048 GHz 3.144 GE 2 

A 

unv ! „||D^^^^^^192JH2 

6) Recovered data 

. 
UUL N 
FilHi •ii rj 

! nm L anLj m 
1 lMfrfftmi 

Figure 2-7. Simulation results (a) time domain, (b) spectrum. 
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From the simulation results it can be seen that the implemented receiver can recover the 

transmitted data without error. Combinations of different input power levels and channel 

attenuations are verified by the simulator as well. 

2.5 Conclusions 

A set of receiver specifications compatible with IEEE 802.11a protocols is proposed with 

the design customized for the immersive C6 system. Based on the link budget analysis, the 

receiver system requirements, such as NF, IIP3, are derived. A super-heterodyne architecture 

is proposed with a corresponding frequency plan. Specifications for the building blocks in the 

receiver system are derived. The receiver architecture and the circuit specifications are 

verified using SystemView. 
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CHAPTER 3 . MULTI-PORT NOISE ANALYSIS 

3.1 Introduction 

Noise transformation of a linear noisy two-port circuit with either feedback or another 

linear noisy two-port has been established in [3.1, 3.2, 3.3] based on the well-known two-port 

noise theory in [3.4]. 

A MOSFET is a three-terminal device, not considering the body contact that is usually 

tied to the substrate. When one of its three terminals (gate, drain and source) is DC or AC 

grounded as a common terminal, the MOSFET can be treated as a two-port circuit. Thus the 

two-port noise transformation can be used when series or shunt feedback is applied to the 

other two terminals. 

In the design of an LNA, a source-degeneration inductor, Ls, is usually presented in the 

first stage of a common-source MOSFET for both noise and input impedance match [3.5, 

3.6]. In this case, the utilized two-port S matrix and the two-port noise parameters are not 

sufficient to model the behavior of the MOSFET with the source terminal not grounded, 

because they are extracted with the condition of a grounded source terminal. Therefore, the 

two-port noise transformations are not valid in evaluating the effect of Ls on two-port noise 

parameters. Instead, a three-port approach should be employed. 

In this chapter the two-port noise theory will be extended to a three-port noise analysis 

that utilizes a three-port noise matrix in [3.7] to characterize the noise behavior of a 

MOSFET. An explicit formulation is given for its noise transformation when one of the three 

ports is terminated with a certain impedance as feedback to form a two-port circuit and the 
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result is verified with circuit simulations. De-embedding a three-port noise matrix from two-

port circuit simulations is also demonstrated. Then the three-port noise analysis is 

generalized to a multi-port noise analysis for the investigation of multiple feedback on multi-

port networks. 

3.2 Two-Port Noise Theory for Linear Noisy Two-Port Networks 

The two-port noise theory in [3.4], the basis of the multiple noise analysis, is briefly 

introduced in this section to facilitate the understanding of the following sections. 

The electrical behavior of a linear noisy two-port network as shown in Figure 3-1 can be 

described by two linear equations between the input and output voltages and currents. Here 

and thereafter the Y-admittance matrix is chosen to represent the linear network. The 

relations between voltages and currents are given as 

2y 
1% 

ya) (VA + ( h )  
1% 

ya) 
+ 

V*21 W À y 
(3-1) 

Linear 
noisy 

two-port 

Figure 3-1. A linear noisy two-port network. 

The internal noise sources of the two-port network are represented by two external 

equivalent noise current sources, h and z2. The equivalent circuit with external noise current 

sources is shown in Figure 3-2. It is worth pointing out that i\ and h are correlated to each 

other because they may refer to the same internal noise sources. 
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Linear 
noiseless 
two-port 

Vi a 

Figure 3-2. An equivalent circuit with external noise current sources of z, and i2. 

It is more convenient to use input-referred noise sources in noise analysis. Re-arranging 

(3-1) gives 

(3-2) 

/ 
I-22 1 ) / 

1 . V (vA Yn ^2, + 

1 . V UJ UJ + 
V 

V Y* 
V 

V Y21 

Define u = - *2 and i = i\ —— z2. (3-2) can be written as 
Y2l Y2\ 

ZTZ X 
y22 1 ' 
y21 Y2i 

UJ % Yu UJ j J 

Y2i Y2J 

(3-3) 

Linear 
noiseless 
two-port 

+ 

V2 

Figure 3-3. An equivalent circuit with input-referred noise sources of u and /. 

The input-referred noise sources are modeled as the noise voltage source u and the noise 

current source i, as shown in Figure 3-3. Normally u and i are correlated to each other. The 

noise current source i can be divided into two parts with one part, not correlated to u, 

while the other part is fully correlated to u. The correlation coefficient is represented by the 

correlation admittance Ycor. The relationship can be written as 
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i = L+Ycor-u (3-4) 

where 

Ycor=Gcor+j-Bct (3-5) 

The equivalent circuit in Figure 3-3 can be further decomposed into Figure 3-4 using (u, 

in, Ycor). The four components, u, zn, and the real and imaginary parts of Ycor, can fully 

describe the noise behavior of a linear noisy two-port network and are named as four noisy 

poles. 

Ji^ 
+ °-

VI YCO| 
o— 

f.(D -Yc 
Linear 

noiseless 
two-port 

+ 

V2 

-o _ 

Figure 3-4. An equivalent circuit with input-referred noise sources of u and i„. 

The correlation admittance Ycor is noiseless. The noise sources u and zn are characterized 

by the Nyquist formulas using the equivalent noise resistance Rn and the equivalent noise 

conductance Gn respectively as 

\u\ =  u - u  =4kTAf-R„ (3-6) 

I , ! ' = 4 t T A f . G ,  (3-7) 

where k is Boltzman constant, T is absolute temperature, Af is the bandwidth. Rn, Gn 

together with Ycor can fully characterize the noise behavior of a linear noisy two-port 

network. 
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In reality, the noise characteristics of a two-port network are measured based on another 

set of four noise parameters: the minimum noise factor Fmjn, the equivalent noise resistance 

Rn, and the optimum source admittance Yopt with Yopt = Gopt + j-Bopt. 

Therefore, there are several representations for the noise behavior of a two-port network: 

{|*'if> |z'2f > hh* }> {|zf, Ycor}, {Rn, Gn, Ycor} or {Fmin, Rn, Yopt}. These 

representations are equivalent to each other. Conversion equations in [3.4] are summarized as 

\h 

0 

1 ~ Y U/ 

'2i y 

' 1 0" 

J*, -Y \ cor K J, 

V 

\hj 

-1/ 

' 2 1  

1 Ycor~Y
1 1 /  

f ; \ 

\12J 

'2i y 

= 1 + 2I.PL+GJR, + G„K 

Yap, = V IK ~ jBcor 

Kor 0 ̂ Rn ) _ ^ opt ~ jB opt 

G, =(G' -[(F^, -l)/(2aj-GQ,]=K 

(3-8) 

(3-9) 

(3-10) 

(3-11) 

I .  | 2  | „  | 2  I  | 2  

N =\Y2l\ >| (3-12) 
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I  | 2  \ l  \u\ = 1 

| U 2 = k , l 2 - ¥ :  (3-13) 

Noise factor (F), or Noise Figure (NF), is a measure that quantitates the noise 

performance of a circuit by representing the degradation of the signal-to-noise ratio due to 

the circuit. 

F = (/^y),„ _ Total available output noise 

(is/J Output noise available from the source 

JVF = 101og,o(F) 

The noise factor of a two-port circuit in Figure 3-5 is given by 

(3-14) 

(3-15) 

(3-16) 

where Ys - Gs + jBs is the source admittance. 

Linear 
two-port 
circuit 

Yjn 1 out 

Figure 3-5. An input-referred noise model for a linear noisy two-port circuit. 

When Ys is equal to Yopt, the noise factor reaches its minimum, Fm;n. This condition is 

called noise match. Any mismatch between Ys and Yopt will yield a larger noise factor. 
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When the input admittance Y;„, which is a function of the load admittance of YL, is equal 

to the conjugate of the source admittance YS, the input port is impedance matched. If the 

output admittance Yout, which is a function of the source admittance YS, is equal to the 

conjugate of the load admittance YL, the output port is impedance matched. If the linear two-

port circuit is unconditionally stable, a unique pair of YS and YL exists that simultaneously 

satisfies input and output impedance match, which is called Simultaneous Conjugate Match 

(SCM). In this condition, the transducer gain GT is optimized to maximum stable transducer 

gain GJMAX [3.8]. The source and load admittances for SCM are noted as YSISCM, YL,SCM-

In many CMOS RF circuits without feedback, YS,SCM is significantly different from YOPT, 

which means minimum noise figure and maximum transducer gain can not be achieved 

simultaneously. If the source admittance is matched for minimum noise figure, transducer 

gain is much lower than Gxmax, and vice versa. Design trade-offs may exist for acceptable 

noise figure and transducer gain. However, simultaneous noise match and impedance match 

at input and output ports are ideal. 

To achieve simultaneous noise and power match, noiseless feedback can be applied to 

modify the network to bring YOPT close to YSJSCM, as shown in Figure 3-6. Noise 

transformation of a linear noisy two-port circuit with either feedback or another linear noisy 

two-port has been established in [3.1, 3.2, 3.3]. 

The previous developed noise transformation is based on the two-port noise theory. The 

original network should remain as a two-port circuit when either shunt or series feedback is 

applied. If this condition is violated, the two-port noise transformation will not hold. 
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feedback 

Linear 
noisy 

two-port 

dback yy V,' 

feedback 

Figure 3-6. A linear two-port network with series and shunt feedback 

In the design of a CMOS LNA, a source-degeneration inductor, Ls, is usually present in 

the first stage of a common-source MOSFET for both noise and input impedance match [3.5, 

3.6]. In this case, this MOSFET should be treated as a three-port circuit because its source 

terminal is not AC grounded when Ls is presented. Two-port noise transformations are not 

valid in evaluating the effect of Ls on the four two-port noise parameters, because the two-

port Y matrix and the two-port noise parameters extracted under the condition of a grounded 

source terminal are not sufficient to model the behavior of the MOSFET with the source 

terminal not grounded. Instead, a three-port approach should be employed. 

The reason can be further explained with the view of an equivalent three-port model as 

shown in Figure 3-7. A three-port circuit can be modeled by a three-port Y matrix and three 

external equivalent noise currents, i\, h and h. When it is treated as a two-port circuit with 

the third port shorted to ground, the resultant two-port network can be represented by a two-

port Y matrix and two-port noise parameters, but these two-port data do not include the 

equivalent parameters associated with the third port. When feedback is applied to the third 

port, these equivalent parameters at the third port are brought into the circuit. Therefore, the 
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two-port Y matrix and two-port noise parameters are not valid to represent the three-port 

circuit with one port terminated with feedback. 

Therefore, a three-port noise analysis is necessary to analyze the feedback effect on the 

two-port noise parameters for a three-port network. Noise transformations based on three-

port noise analysis will be presented in the following sections and then generalized to a 

multi-port noise analysis. 

A Y13V3 Y12V2 Yu Y22 Y23V3 Y21V1 ,2 

—o 

Figure 3-7. An equivalent circuit of a linear noisy three-port network. 

3.3 Three-Port Noise Analysis 

3.3.1 Noise Matrix 

A linear noisy three-port network can be characterized by either its admittance matrix Y 

and three equivalent noise current sources, i\, h and h, or its impedance matrix Z and three 

equivalent noise voltage sources u\, % and % [3.7]. These two representations are equivalent 
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to each other. In this paper the former one is used, as shown in Figure 3-8, for reasons of ease 

of de-embedding the three-port noise matrix from two-port circuit simulations. 

- o—L 

Linear 
noiseless 
three-port 

,h_ 
-° + 

Vz 
-I o -

i-tl " I 
+ V3 " 

Figure 3-8. Au equivalent representation of a linear noisy three-port network with internal noise sources. 

The analytical relation between voltages and currents applied to the three ports can be 

written as 

(3-17) 
f / , 1  X y \2 y »  (K p.) 

h  
= y2l 

?22 
y23 v2 + h 

UJ U, 1̂ 32 W UJ 

The corresponding noise current matrix can be written as [3.7] 

N = iiH = 

l \ l \  h l  2  z i z 3  

hh hh hh (3-18) 

The noise current matrix has nine entities |/,|2, |/2|2, |/3|2 and the real and imaginary 

parts of %, 'iz3 , z'2z3 • For a linear noisy two-port, the rank of both admittance and noise 

matrices is reduced to two. The noise current matrix will have four entities: |/,|2, |/2|2 and 

the real and imaginary parts of % • 
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3.3.2 Extraction of Three-port Noise Matrix 

Current EDA tools support only two-port noise analysis in circuit simulations. A set of 

four noise parameters is given as minimum noise factor Fmin, equivalent noise resistance Rn, 

and optimum source impedance reflection coefficient ropt. This set of four noise parameters 

is equivalent to other noise parameter representations such as the noise current matrix or the 

four noise parameters {Rn, Gn, Ycor} in [3.4]. Conversion among these representations can be 

done using equations in [3.4]. 

A three-port network can be reduced to a two-port by shorting one of the three ports. By 

doing this, the noise current at the shorted port is not involved in the two-port noise analysis. 

This is shown in a later section. Thus, a corresponding circuit simulation of the resultant two-

port will give {Fmin, Rn, ropt} that can be converted to {|^|2, \ip\2 , ikie* }, where k,i= 1,2,3 

and M,. Therefore a three-port noise matrix can be extracted from three sets of two-port 

circuit simulations by shorting each of the three ports respectively. 

3.3.3 Three-port-to-Two-PortNoise Transformations 

A three-port network is converted to a two-port when one of the three ports is terminated 

with a load as feedback. The four noise parameters {Fmin, Rn, Fopt} given by two-port circuit 

simulations of the resultant two-port are dependent on the three-port noise matrix and the 

feedback. Shown in Figure 3-9 is a three-port network of which the third port is terminated 

with an admittance of = G3 + j-S3, having a thermal noise represented by Z'g3 where 
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II 

Linear 
noise-free 

3-port 

Figure 3-9. Conversion of a three-port to a two-port network with feedback. 

Applying Kirchhoff s rules to the third port leads to 

h ~ Y3V3 + ZG3 

Substituting (3-18) into (3-16) leads to 

'V 

v'2y 

Y ^13^31 Y ^13^32 
11 v -M2 T7 

Y2l-

y< 
f T/ \ 

23J 31 v Y2}Yn Y 2 2 - V^2V 
'4 y 

Z'l + ZG3 ) 
-M 
1 23 (h + ZC3 ) 

y,,' 

y • y ' v 21 22 y 

>i 

^2y 

f ; 

\h 'J 

(3-19) 

(3-20) 

where I4 = F33 + y3 and (F)' is the Y matrix of the resultant two-port while /[ and ^ are the 

corresponding equivalent noise current sources. 

When the third port is shorted, i.e. Y3 is infinity, as a special case of feedback, (3-19) can 

be simplified into 

/ 7 \ /V V VT/\ /,• X 
(3-21) V 

= 
^1 "I + 

V 
/2, J2, 1-22 J ky <Z2, 
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Noise analysis of the resultant two-port will involve only i\ and z'2. Therefore, the 

generated four noise parameters {Fmjn, Rn, ropt} from a corresponding two-port circuit 

simulation can be converted to {|z',|2, |z'2|2, z'jz'2 }. By shorting each of the three ports 

respectively, a three-port noise matrix can be de-embedded from three sets of two-port circuit 

simulations. 

The noise model of a resultant two-port in Figure 3-9 is shown in Figure 3-10 [3.4]. Its 

four noisy poles are denoted as the noise voltage source u', the uncorrected noise current 

source zn\ and the correlation admittance Y'nr, where M2 = 4kT\f • R'n and 1/12 =AkThf • G'n. 

Linear 
noiseless Vi '1 (i 
two-port 

h. 

P'2 V2 V; 

Linear + 
noiseless Y2 

—0 two-port Y2 
—0 

(a) (b) 

Figure 3-10. (a) Equivalent two-port network of Figure 3-9 with external noise currents *V and <2'; 
(b) Equivalent two-port network with input-referred noise four poles. 

The relation between the four noisy poles and the equivalent noise currents and i'2 is 

given as [3.4] 

{; /yt yt 1 
Icor "Ml 1 

VZ2 J % 0, 
(3-22) 

Combining (3-20) and (3-22) gives 

v 0 

/ A  

J\lnJ 

z 
1 0 V 

( h )  F7I0 

h  

<*3, 

y 4  

0 1 
h  

<*3, 
y23 

y  

h  

<*3, y  
V 4 y  V  J 4  y  

( Z  G3 )  (3-23) 

The independency between u' and i'n leads to 
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u'-i l  = 0 (3-24) 

The independency between z'G3 and i\, h, z'3 leads to 

'G3 ' h — 0 5 ZG3 ' Z2 — 0 5 ZG3 ' h ~ 0 (3-25) 

Substitution of w' and zn' resulting from (3-23) into (3-24) gives 

y, Yn —7 13 ; *; 1 23 ; , •,13''23 ( I2 
+ L- I2 

hh y h h * hh + 
Tr 2 [ 1*31 1 |fG3 

M *4 

| /2 |2  + 23 
'31 +W ]--3"l'2'3 ~~?Th h 

Y4 

(3-26) 

Multiplication of (3-23) by its conjugate gives 

• |2 , I 231 I, |2 , I, |2 

w 
h\ +7^ir| 141 +lzG3l I—3rhh —3~h z: ^2*3 Tr 2 3 (3-27) 

2 17, 13 { I. I2 
zi| +^77TI l'3 fi + U, G3 

G3 
23 • • * 723 . 
. *2*3 y h h 

j-A lA 

(3-28) 

The dependency of two-port noise parameters, {Izz'l2 , 1/12, Y'or} on the nine entities 

12 I 12 I 12 
!/, , i'J , l/3l , z'1/2 , z'1/3 , z'2/3 } of a three-port noise current matrix is explained in (3-

25)-(3-27). Conversion from {|z/|2, |z',|2, 7^or} to {Fmi„, Rn, ropt} can be readily done using 

equations given before. 

3.4 Example of Three-Port Noise Analysis 

An N-MOSFET from a standard CMOS 0.18-|j,m technology is used as an example. The 

three-port scattering matrix 83? is extracted at a frequency of 5.3-GHz with Ls = 0 with 
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schematic configuration shown in Figure 3-11. The three-port noise current matrix ]%, is 

extracted using the procedure discussed above. The two-port scattering matrix 82? and noise 

current matrix Nap are also extracted with port 3 grounded and Ls = 0. The scattering matrix 

can be converted to a Y matrix using equations in [3.8]. The matrices are listed below as 

/0.945Z-37.0° 0.199/58.1° 0.274/56.8° A 

1.024/136.8° 0.828/-47.8° 1.162/-35.10 S3P = 

N3p -

^0.997/-19.1° 0.163/49.3° 0.384/167.6° 

^ 1.34 4.35/85.7° 4.36/-84.6°^ 

4.35/-85.7° 480 465/174.0° 

^ 4.36/84.6° 465/-174.0° 488 y 

(0.874/-64.2° 0.152/40.5° ) 

*le-4 

S 2  P = 

n2, -

2.83/124.9° 0.698/-68.3' 

1.34 

4.35/-85.7° 

4.35/85.7 

480 

o\ 
*le-4 

Vdd 

DC bias Sj RF choke 

RF choke: 

Port 1 
<f DC block 

< 

•Î" RF choke 1 

DC block 

"r Mi 
Port 2 

Ls =" 

DC block 

_L ? 
Port 3 

Figure 3-11. Extraction configuration of the three-port scattering and noise matrices. 

Changes of the noise parameters {Fmin, Rn, ropt} of the N-MOSFET, with Ls varying 

from 0 to 5-nH, are predicted using both the presented three-port theory with Sgp and Ngp and 
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the two-port theories in [3.1, 3.2, 3.3] with Sap and Nap. The computation results are 

compared to the results of two-port circuit simulations with parametric analysis of Ls. 

From the comparison in Figure 3-11, 12, 13, it can be seen that the noise parameters 

predicted by both the three-port and the two-port approaches start at the same points as the 

simulation results when Ls is zero. As Ls increases, predications by the three-port theory 

accurately follow the simulation results while the two-port theory gives inaccurate 

predications. Therefore, it is necessary to use the three-port noise theory with three-port noise 

matrix to predict the change of the noise parameters with respect to source feedback for a 

three-terminal MOSFET. 

2. 
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Figure 3-13. Simulated and computed R„ versus Ls. 
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Figure 3-12. Simulated and computed NFmi„ versus Ls. 
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Figure 3-14. Simulated and computed ropt versus L,. 

3.5 Application of Three-Port Noise Analysis 

The present noise transformation is used in the design of an LNA to optimize series 

feedback for simultaneous noise and power match. Shown in Figure 3-15 is a single-ended 

LNA with series feedback Ls and La. L;n and Cm, Lout and Cout consist of input and output 

matching networks respectively. The three-port S matrix and noise matrix of the transistor 

Mi are given in the previous section. The two-port S matrix and noise matrix of the transistor 

M% at a frequency of 5.3 GHz with source and drain as port 1 and 2 respectively and gate 

grounded are listed below as 

z0.442Z-172.8° 0.0492/19.3°^ 
SM2 = 

I P  1.25Z-26.3° 0.873/-36.8' 
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2 P  

' 4.35e-2 4.19e-2Z-175.90> 

^4.19e-2Z175.9° 4.3 le-2 y 

1_ ^ Lout 
Tpdd 

X 
|U 

j In Port 2 

core circuit; % 

Figure 3-15. Schematic of single-ended LNA with feedback. 

The simultaneous conjugate match points of the core circuit are denoted as Fin,scM, 

Font,SCM for source and load respectively. F^SCM, rout,scM, and ropt of the core circuit are all 

dependent on Ls and La. Tuning of Ls and La can satisfy various gain and noise requirements. 

Computation using the three-port theory finds a combination of Ls = 0.74 nH and La - 0.43 

nH that yields an equal value of 0.544+j 0.473 for both ropt and Tin,scM- This means 

simultaneous noise and power match can be realized under this condition. The corresponding 

matching networks are 2.00 nH, 0.285 pF, 2.54 nH, 0.159 pF for Lin, Qn, Lout, Cout 

respectively. The scattering parameters S and noise figure are plotted in Figure 3-16 and 

Figure 3-17. It can be seen that at a frequency of 5.3 GHz the gain is maximized to 17.1 dB 

while the noise figure is minimized to 1.06 dB. 
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Freq ( GHz ) 

Figure 3-16. Simulated S parameters. 

2 
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0i.3 4.8 5.3 5.8 6.3 
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Figure 3-17. Simulated NF and NFmi„. 

3.6 Multi-Port Noise Analysis 

3.6.1 Multi-Port Noise Analysis 

The three-port noise analysis can be extended to the case of a multi-port network with 

several ports terminated with feedback so that optimization of multiple feedback can be 

realized. For an N-port network shown in Figure 3-18, the internal noise sources are modeled 

with external noise current sources i\, h, ..., ZN since a Y matrix is used. The analytical 

relations between the voltages and currents can be written as 
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(3-29) 

Assume k ports out of N ports of this network are terminated with admittances Ym = G„ 

+ j-Bm, having thermal noise sources represented by i° where Iz'f I = AkTLf • Gm and m = N-

k+1, N-k+2, N. The equivalent circuit is shown in Figure 3-19. 
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Figure 3-18. Au equivalent representation of a linear noisy N-port network with internal noise sources. 
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Figure 3-19. A linear noisy N-port network terminated with multiple feedback. 

Applying Kirchhoff s rules to the N-k+1 ̂  to Nth port leads to 

1 N-k+1 

1 N-k+2 

1
n ; 

4^+1 0 
o 1 N-k+2 

DeGne (YA), (Yg), (Yc), (Yo) and (Yy) as 

fc )=  

0X 

0 
N-k+l 

N-k+2 

Yn A Vn y 

( f 
N - k +1 

iG 
N-k+2 

v 'n y 

^11 ±\2 

Yn Y22 

Y Y 
N-k,I  1N-k, 2  

y y 
J \ ,N-k+\ 11,N-k+2 

Y2,N-k+1 Y2 > N_ k + 2  

Y Y 
y1  N,N-k+1 1  N,N-k+2 

y\ ,N-k 

' 2  ,N-k 

1  N-k,N-k y 

y-, 
2  ,N 

N,N Y 

(3-30) 

(3-31) 

(3-32) 
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(Tcb 

^N-k+1 ,1  ^N-k+\,2 ^N-k+l,N-k 

... y 
1 N-k+2,N-k 

Y Y 1 N-k+2,\ 1 N-k+2,2 

V ^N, 2 Y 
1 N,N-k 

(3-33) 

f c ) =  

r Y 
1 N-k+l,N-k+1 

Y 1 N-k+2,N-k+\ 

Y 
N-k+\,N-k+2 

Y 1 N-k+2,N-k+2 

Y 1 N-k+\,N 

Y 1 N-k+2,N 

\ 

^N,N-k+1 ^N,N-k+2 ' ' ' ^N,N 

(3-34) 

f o ) =  

/ y 
1 N-k+\ 

0 

0 

0 

Y 1 N-k+2 

0 

\ 0 

0 

YnJ 

(3-35) 

(3-29) and (3-30) can be rewritten respectively as 

' /, X 

1 N-k 

1 N-k+1 

V ^n J 

^ 4 

r r t  ) f A ) 
h 

yN-k + lN-k 

^N-k+1 lN-k+1 

< y I lN y 

(3-36) 

f] \  
1 N-k+l 

IN-k+2 
- ~(YT ) 

( V ) r  N-k+l 

VN-k+i 
— 

( i G  )  

iG 
lN-k+2 

< IN y v y s y i° 
\  lN J 

(3-37) 

(3-36) can be decomposed into two equations as 

f /, 1 
A 

= fc) 

' ' 

+ (4) 

f V 1 K AT-t+1 
VN-k+2 

+ 

r '' l 
h 

J N-k) y < ^ y KlN~k > 

(3-38) 
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( I ^ 1 N-k+1 

IN-k+2 

"S
 

..
. 

y
 

+ (̂ )) 

( V ) 
r  N-k+1 

VN-k+2 
+ 

fi \  
lN-k+\ 

lN-K+2 

\ ^N ; y N-k; K ^N , v ZJV J 

Combing of (3-37) and (3-39) leads to 

fV x 

V VN J  \VN-k J 

N-k+l 

'N-K+2 

\  lN J 

( iG 

;G 
N-k+2 

\  "N J 

Substituting (3-40) into (3-38) leads to 

\JN-k J 

\ lN-k ) 

z x 

\YN-k J 

'JV-I+1 

\ lN J 

r i G  \ 

iG 
lN-k+2  

V lN J 

(3-39) 

(3^0) 

(3-41) 

The linear and noise behavior of the resultant (N-k)-port network is characterized by (3-

41). The equivalent model of the (N-k)-port network is shown in Figure 3-20, where the 

corresponding noise current sources are denoted as i\, ii, ..., z'N-k• The analytical relation 

between the (N-k) noise current sources and the original N noise current sources is given by 

\}N-k J \ lN-k J 

ri x 
lN-k+1 

*N-K+2 

V 

+ 

(  iG \ 
N-k+l  

iG 
N-k+2 

V 'AT J 

(3^2) 



www.manaraa.com

38 

+ 

Vi 

+ 

v2 

o— 

VN-k 

'1 > 
© 

4 
h' 

© 

I N-k 

IH-

© 

Linear 
noise-free 
(N-k)-port 
network 

Figure 3-20. Equivalent circuit of the (N-k)-port network with external noise current sources. 

Define io, ii, i2, i g respectively as 

Z ;l \ 

In = 

\ lN-kJ 

(3^3) 

z - \ 

l, = 

\ lN-kJ  

(3^4) 

ri x 
'jV-i+l 

l 2  =  
N-K+2 

\  N J  

(3^5) 



www.manaraa.com

39 

lG ~ 

r f \ 

N-k+l 

iG 
N-k+2 

iG 
\ N J  

(3-46) 

(3-42) can be rewritten as 

- ( ' z + v  (3-47) 

Applying a Hermitian transformation to (3-47) leads to 

io = [i,-{Yb)\Yd + Y T y  .(i2 +iG)f (3-48) 

The noise current matrix of the resultant (N-k)-port network is given by the time average 

of the multiplication of (3-47) and (3-48) as 

=  [ i ] + ! „ ) ] •  [ i , + i c > r  

Because io is independent of ii, 12, (3-49) can be simplified into: 

(3-49) 

i o  - i "  = i , - i 1
H  - ( y f l ) - ( y f l  +  F r r - i 2 - i , H  

-iT^f .(yd* +y t
hY .(yfl)H 

+  ( y b  ) .  ( y d  +  Yt )-' . [ï~îf + ï~îf\{yd
h + yt

h y • (yb y 

(3-50) 

The noise behavior of the resultant (N-k)-port network can be fully characterized by the 

noise current matrix given in (3-50). The original N-port noise current matrix can be 

extracted using the approach discussed in the previous section. 

3.6.2 Four-Port-to-Two-PortNoise Transformation 

A MOSFET should be a four-terminal device if the body terminal is not tied to the 

substrate. Feedback can be applied in body terminal as well as the source terminal for 

modification of noise parameters. For the analysis of source and body feedback, a four-port-
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to-two-port noise transformation is derived from the multi-port noise analysis. The equations 

for noise transformation are given below. 

The analytical relations between the voltages and currents of a four-port network shown 

in Figure 3-21 can be written as 

(3-51) 
f / , 1  X 712 7,3 V (VA ro 

h Y21 722 723 724 V2 
+ 

i2  

h 731 732 733 734 V3 
+ 

h 
742 7« 7,4/ W \hj 
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Figure 3-21. A linear noisy 4-port network terminated with multiple feedback. 

The four-port noise current matrix is 

N = ii = 

(77  
hh  h l 2  hh  h l 4  

'2'T i 2 i 2  hh  hh  

hh  l 3 l 2  hh  hh  

v'Vl hh  hh  '4C; 

(YA), (YB), (YC), (Yd) and (YT) are given respectively as 

y' V 21 J 2 2  y 

(3-52) 

(3-53) 

k ) =  
^3 ^4 

V^23 ^24 y 
(3-54) 



www.manaraa.com

41 

f y Y x 

fc)=L31 * 

V 41  1 42 y  

(3-55) 

(r„)= 
V^43 ^44 V 

(3-56) 

(rr)= ^ 0^ 

\0 
(3-57) 

io, ii, iz, ie are given respectively as 

!Q = 
/ y \  

\ h j  
(3-58) 

/ • x 
:i = 

\h y 
(3-59) 

i2 = 
/; X 

(3-60) 

»G = 
vz4 y 

(3-61) 

Substitution of (3-53) - (3-61) into (3-47) leads to 

_ II 

Y Y 
13  14  

Y Y 
V23  24  J  V 

' 34  

4̂4 +Y4J 
•(Î2 +ÎG) (3-62) 

The noise current matrix of the resultant two-port network can be written as 
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N „ = i 0 i o  

=i, ir  -
%3 ^^3 + ̂ 3 ^4 

V^23 ^24 ) V ^43 ^44 +^4 Y 
i 2 - i f  

% + %  ^ 4  ^  

v ^43 ^44 + ^4 J 

f Y v Ah 
•l 1-1 -*1/1 

V^23 ^24 J 

% %,Y%3+r3 ^4 

V^23 ^24 , ^43 ^44 + ̂4 J 

i 2Î2 +iG iS 

%+% ^ 

v ^43 I44 + ^4 y 

r,3 %, 

V^23 ^24 y 

(3-63) 

The two-port noise parameters such as {Rn, Gn, Ycor} or {Fmin, Rn, ropt} can be derived 

from the noise current matrix using (3-10) - (3-13). 

3.7 Conclusions 

In this chapter, the two-port noise theory has been extended to a three-port noise analysis 

using a three-port noise current matrix to model the noise behavior of a three-port network. 

An explicit formulation is given for three-port-to-two-port noise transformation. The 

approach is applied in the design of a CMOS LNA for simultaneous noise and power match. 

De-embedding a three-port noise matrix from two-port circuit simulations is also presented. 

The three-port noise analysis is generalized to a multi-port noise analysis for the 

investigation of multiple feedback on multi-port networks. Optimization of noise and power 

performance of a multi-port circuit with multiple feedback can be achieved using this 

approach. 
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The multi-port noise analysis is based on the noise parameters and the Y matrix of a 

circuit. Therefore, it is independent of semiconductor technology and can be applied to 

various technologies such as CMOS, SiGe or GaAs active devices. 
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CHAPTER 4. DESIGN OF THE LOW-NOISE AMPLIFIER 

4.1 Introduction 

An LNA is typically the first active stage in a radio receiver. Its performance, such as the 

noise figure, gains and linearities, is critical to the overall performance of the radio receiver. 

Previous and recent developments in the design of the LNA have focused on the optimization 

of the noise figure and input impedance match, which is called simultaneous noise and input 

match (SNIM) [4.1, 4.2]. However, the transducer gain of an LNA needs to be optimized as 

well because the noise contribution from stages following the LNA are compressed by this 

gain. From this point of view, in the design of an LNA, noise measure (M) needs to be 

optimized as well [4.3]. Noise measure is proportional to the noise figure and inversely 

proportional to the transducer gain. So a maximum transducer gain with a minimum noise 

figure will lead to a minimized noise measure. Since the transducer gain of a two-port circuit 

is dependent on the input and output impedance match, the SNIM optimization technique, 

which does not consider the output impedance match, does not necessarily lead to the 

maximum transducer gain although the noise figure is optimized to its minimum. Therefore, 

these techniques do not necessarily lead to an optimal noise measure. 

Recent design approaches have involved tuning of the active device sizes, bias points 

and feedback, etc, to minimize the noise figure while maintaining the input impedance 

match. However, the analysis is based on a simplified MOSFET small-signal model that 

neglects many parasitic components and noise sources. The design strategy heavily relies on 
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the accuracy of the mathematical model [4.2]. In the design of an LNA for operation in a 

GHz band, the parasitic components are not negligible so the simplified model is not valid. 

This chapter explores the design trade-offs between the transducer gain and the noise 

figure in the design of a CMOS LNA. An optimization technique with explicit formulas is 

proposed for optimization of noise and gain match. Because the presented optimization 

technique is based on the measured noise parameters and S parameters instead of the 

simplified MOSFET model, this approach is independent of specific device models. 

Therefore, it is a generic approach that can be applied to other IC technologies such as 

bipolar transistors. In addition, this approach simplifies the design strategy by not involving 

sophisticated tuning schemes. The proposed technique is applied in the design of a 5.3-GHz 

fully integrated LNA in a CMOS 0.18-pm technology. 

4.2 Gain Theory for Linear Two-Port Networks 

In this section, the gain theory from [4.4] is briefly introduced for a linear two-port 

network shown in Figure 4-1. The reflection coefficient, T, of an admittance, Y, is given by 

where YQ is the normalization admittance. 

8 1 1 Linear 1 
oQ) n Ys 'CD two-port <-| J YL 

L—It— 1 network J 

Y;n Y out 

Figure 4-1. An equivalent noise model for a linear noisy two-port circuit. 
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The input and output admittances of the two-port network are noted as Yj„ and Yout 

respectively. The source and load admittances are noted as Ys and YL respectively. Y,n is a 

function of YL and Yout is a function of Ys. Using the reflection coefficients and the S 

parameters of the two-port network, the analytical relation can be expressed as 

P _ Sii asT l 

1 - %  
(4-2) 

_s21- Asr$ 
1 — " (4-3) 

where 

- SnS22  -S l2S. 21 (4-4) 

The transducer gain GT of the two-port network is given by 

\i-suTs-s22rL+àsrsrL\2  
(4-5) 

From (4-5) it can be seen that GT is dependent on both Fs and FL. When the two-port 

network has a simultaneous conjugate match, which means Fs = Fjn* and FL = Fout*, Gj is 

optimized to its maximum as 

21 
T max ( K - J K 2 -  I )  (4-6) 

'12 

where 
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K is named the stability factor of a two-port network. SCM only occurs when K is 

greater than 1. A two-port network is called unconditionally stable when its K is greater than 

1 and As is less than 1. 

4.3 Optimization for Noise and Gain Match 

4.3.1 Simultaneous Noise and Input Impedance Match 

In this section the simultaneous noise and input impedance match (SNIM) technique 

from [4.5, 4.6] is briefly introduced. No in Figure 4-2 represents a linear two-port network 

while Ni and N% are ideal lossless impedance matching networks that transform the source 

and load impedances of 50 Q to the desired values for optimization of the noise figure and 

the transducer gain. The cascaded networks of {Ni, No, Na}, {Ni, No}, {No, N%} are noted as 

Mo, Mi and M? respectively. Ys', YL, Yjn', Yout' are the source, load, input and output 

impedances of No respectively. Fs', FL', F;/, Fout' are the corresponding reflection 

coefficients respectively. Ys, YL, Yjn, Yout are the source, load, input and output impedances 

of Mo respectively. Fs, rL, Fin, Fout are the corresponding reflection coefficients respectively. 

The S parameters of the network No and Mo are denoted as S y and Sy' respectively. 

Since the source and load impedances of Mo are the normalization impedance (50 O), 

then Fin = Su' and Fout = S22'. When the input impedance of Mo is matched, Su' = 0. When 

the output impedance of Mo is matched, S22' = 0. Since N2 is an ideal lossless network, the 

two-port noise parameters of M2 are the same as these of No. In addition, the impedance 

matching levels before and after Ni or N2 are preserved, i.e., |Sn| of M2 is equal to |Sn| of Mo 

and IS22I of Mi is equal to IS22I of Mo, because of the power conservation. 
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Figure 4-2. A linear two-port network with matching networks for noise and impedance match. 

To achieve the minimum noise figure of No, the source admittance of No, Ys', needs to be 

equal to the optimal source admittance of No, Yopt, which leads to 

r;=r%, (4-8) 

where ropt is the reflection coefficient of Yopt. 

To achieve the input impedance match of No, the source admittance of No, Ys', needs to 

be equal to the input impedance of No, Ym', which leads to 

r;=(C)' 

n <1 

(4-9) 

(4-10) 

To achieve the simultaneous noise and input impedance match of No, Fs' has to satisfy 

both (4-8) and (4-9), which leads to 

r; = r„„=(n,)- (4-11) 

The analytical relation between Tin' and rL' can be expressed using the S parameters as 
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rL = si-sas'r (4"12) 1 ^22 ' * L 

Substitution of (4-12) into (4-11) leads to 

. c-») 
As S22 ' I op, 

with a constraint imposed by (4-10). The load admittance given by (4-13) is noted as YL,SNIM-

The corresponding reflection coefficient is noted as FL,SNIM-

When No is loaded with the optimum source admittance (Yopt) at the input port, and the 

load impedance (YL,SNIM) given by (4-13) at the output port, the simultaneous noise and input 

impedance match is realized for this network. However, YL,SNIM given by (4-13) is not 

guaranteed to be a positive-real value. Therefore, the solution of (4-10) and (4-13) doesn't 

always exist. 

Substitution of (4-13) into (4-10) gives 

P » ^ii 
°P< ,  | 2  

*22 1 - \S2 

<^_&t (4-14) 
I" 1^22 | 

It is implied by (4-14) that Fopt should lie within a circle to have a valid solution for the 

load impedance. This circle, which is on the input reflection coefficient plane, maps into the 

unity circle on the load reflection coefficient plane, and is called the input-referred load 

stability circle (ILSC). When (4-14) is not satisfied, a valid load impedance cannot be found 

to achieve SNIM. In this case, lossless series or shunt feedback can be employed to modify 

the original network of No to change the locations of Fopt* and the ILSC. 
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4.3.2 Optimization Technique for Noise and Gain Match 

When (4-14) is satisfied, simultaneous noise and input impedance match can be realized 

by transforming YL to YL,SNIM and Ys to Yopt respectively. Since the source admittance is 

fixed to Yopt for minimum noise performance, the output admittance of No is fixed. 

Generally, Fout* is not equal to 1% which means the output impedance of No is not matched to 

the load impedance. Because the impedance matching level is maintained before and after 

Nz, the output impedance of Mo is not matched to its load impedance either. Since the 

transducer gain is dependent on both the input and the output impedance match, the SNIM 

technique doesn't necessarily lead to the maximum transducer gain. Furthermore, rout* is 

significantly different from FL in CMOS technology, which usually leads to a very low level 

of the output impedance match that dramatically degrades the gain performance. Therefore, 

the SNIM technique is realized in a way that achieves minimum noise figure performance at 

the cost of gain performance. 

It can be seen from (4-5) that Gj is dependent on Su' and S22'. Under the condition of 

SCM, Su' = 0 and S22' = 0, leading to the maximum transducer gain. Under the condition of 

SNIM, Su' = 0 while S22' * 0 (usually a large number) so that GT is considerably lower than 

its maximum. If both Su' and S22' are small numbers, Gj can be optimized close to its 

maximum. If a small amount of input impedance matching can be used to compensate the 

output impedance matching, the transducer gain under SNIM can be increased. This design 

tradeoff can be realized by varying FL' [4.7]. An optimum FL' may be found to maintain both 

the input and output impedance matching to desired levels. Since the noise parameters of M2 

are independent of the lossless N2, the noise match will be maintained with a varying FL'. 
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For a linear two-port network, if the source impedance is fixed, the output impedance is 

fixed as well. The input and output impedance matching levels are dependent on the load 

impedance. For a constant impedance matching level at the input or output ports, i.e., |Sn| or 

IS22I is a constant number, the loci of the corresponding load impedances form a circle on the 

load reflection coefficient plane. This kind of circle will be called the constant input or output 

matching circle. 

The loci of a constant input matching circle lie on various constant output matching 

circles. There exists a locus that is corresponding to the minimum (thus the best) of the 

various output matching levels. This locus is the tangent point of the constant input and 

output matching circles. A set of input and output matching circles are plotted in Figure 4-3. 

— 1822'I —10 dB ISn'l = -30 dB 

V— |S22'| = -30 dB |Sn'| = -10 dB 

Figure 4-3. Constant input and output matching circles on the load reflection coefficient plane. 

As illustrated in Figure 4-3, the constant input matching circle of |Sn'| = -20 dB on the 

load reflection coefficient plane is tangent to the constant output matching circle of |S22| = -

20 dB. Locus B is the tangent point. Its corresponding load impedance gives the best output 

matching of -20 dB when |Sn'| = -20 dB. The other loci of the constant input matching 
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circle of |Sn'| = -20 dB yield worse output matching levels. It also can be seen that for the 

input matching of |Sn'| = -30 dB, the best output matching is |S^'| = -10 dB with the load 

impedance corresponding to the tangent point A. For the input matching of |Su'| = -10 dB, 

the best output matching is |S^'| = -30 dB with the load impedance corresponding to the 

tangent point C. 

Therefore, for a given input matching level of n, the best output matching level of m can 

be found by locating the constant output matching circle tangent to the constant input 

matching circle of |Sn'| = n. There are two cases to be considered: outer tangent and inner 

tangent, as illustrated in Figure 4-4. 

Figure 4-4. Tangent constant input and output matching circles in the load reflection coefficient plane, 
(a) outer tangent, (b) inner tangent. 

For the network shown in Figure 4-2, when iy = Fopt, the constant output matching circle 

of 1822'! = m is given as 

(0,0) (0,0) 

(a) (b) 

Fl ^C22 ~ P22 (4-15) 

where 
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FC22 _ 
I"\,OZM 0 m ) 

1 Fl.OZM m 

m 
Pli -

i-h„ OZM\ 

1 F"I,OZJ/ M 

rl,ozm - (r„„, ') r:=r„„ 

% - A , - r y  

V 1~Sn-roPl J 

The constant input matching circle of |Sn'| = n is given as: 

where 

l^i rell| - pn 

_ a*b-n2c*d 
c11 _ _T~|2 21 |2 \a\ - n \c\ 

m\ad - bc\ 
= : ,2 „ ,2 

a\ —n \c\ 

" = s„-(r „J- A s  

6 = su-(r,)-

C - A g  ' ^ o p t  ~ S 2 2  

(4-16) 

(4-17) 

(4-18) 

(4-19) 

(4-20) 

(4-21) 

(4-22) 

(4-23) 

(4-24) 

< /  =  ! - % , . ( 4 - 2 5 )  

Usually the input impedance matching is more constrained because it determines how 

much the input signal power is absorbed into the circuit. With |Sn'| = n is specified, the 

optimum IY needs to be found that leads to a minimum |S^'| = m. As shown in Figure 4-4, 
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the two constant matching circles of |Sn'| = n and IS22I = m should be tangent to each other. 

Their center points and radiuses should satisfy 

Irc22 - rcl 11 = Pi 1 ± P22 (4-26) 

where + sign is for the case of outer tangent and - sign is for the case of inner tangent. Since 

the center points and radiuses are all functions of m, the minimum output matching level of 

m can be found by solving (4-26). 

Substituting (4-16), (4-17), (4-20) and (4-21) into (4-26) leads to 

C4 • W24 + C3 • ZM3 + C2 • m2 + Cl • m + C0 — 0 (4-27) 

where 

C4 — 1^,02*? I 0 ~~ ^L,OZM^c\ 1 ~^L,OZM ^11 ~ P\\ | ) + |^cl 11 ^LflZM (4-28) 

c3=±2Ai|riiOZM| (l—|ri0ZM| ) (4-29) 

^2 — | (^Al + ̂ L.OZM^cU +^L,OZM^c\\ ^c\ 11 j^L.OZM | ) 

+^l,ozm rcl i + r,ozwrcl, -1 
(4-30) 

C, =T2p,/(l-|r^|') (4-31) 

Co= |r/,i0zA/1 -rL>oa#rcll -rL,ozMrcn+\rcU\ - pn (4-32) 

There is at most one realistic root out of the four possible roots of (4-27). After m is 

known, the center point FC22 and the radius pc22 of the constant output matching circle of IS22I 

= m can be determined using (4-16) and (4-17). 

The optimum FL for the outer tangent case can be found as 
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The optimum iy for the inner tangent case can be found as 

r; = Al r,„ + r.„ (4-34) 
Pu Pn P22 Pu 

The minimum |S^'| = m resulted from (4-27) for a specified |Sn'| - n is not guaranteed to 

meet the design requirement, because there is only one design freedom, IY, but there are two 

goals, input and output impedance matching, to meet. If IS22I = m is larger than the required 

value for a given |Sn'| = n, extra design variables such as noiseless feedback can be 

introduced to modify the network No so that a simultaneous optimum noise match and gain 

match can be achieved. The introduced feedback will change the noise parameters of the 

network No. Therefore, the multi-port noise analysis presented in the previous chapter should 

be employed to evaluate the changes due to feedback in the optimization procedure. 

4.4 Design of a 5-GHz CMOS LNA 

4.4.1 Schematic View 

The proposed optimization technique is carried out in the design of a fully integrated 5.3-

GHz LNA in a wireless communication receiver for IEEE802.11a applications. The 

schematic of the single-ended LNA is shown in Figure 4-5. 
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Figure 4-5. Simplified LNA schematic with bias circuitry. 

In Figure 4-5, transistors Mi and M2 form the LNA core circuit (No), a cascaded structure 

that has a potential of high gain and high isolation. A source degeneration inductor Ls and an 

inter-stage inductor La are series feedback that will be used for optimization of noise and gain 

match [4.8, 4.9]. The input impedance matching network (Ni) consisting of Qn and Ljn will 

transform the source impedance of 50 Q to the optimum source impedance of the LNA core 

circuit. The output impedance matching network (N%) consisting of Cout and Lout will 

transform the load impedance of 50 O to the optimum load impedance that leads to the noise 

and gain match. Qn and Cout also serve as the DC blocking capacitors while Lm and Lout serve 

as the bias inductors. 
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4.4.2 Schematic Design 

S parameters and noise matrices of Mi and M% at a frequency of 5.3 GHz are given in the 

previous chapter. While Ls = 0 and La = 0, the noise parameters of No are calculated as 

NFmin = 0.759 dB, Rn = 28.8 Q, rop, = 0.543 +j 0.574. 

The S parameters are calculated as 

_ (0.942 Z - 55.0° 0.00635/73.0°' 

{ 3.00Z111.80 0.906 Z-37.7°, 

The stability factor is less than 1. A shunt 800-Q resistor at the output port is needed to 

make the circuit unconditionally stable at this frequency. With this resistor, the noise 

parameters are transformed to 

NFmin = 0.777 dB, Rn = 29.6 O, ropt = 0.542 + j 0.577 

The S parameters are transformed to 

f0.942 Z - 55.0° 0.00602 Z73.9cA 

( S )  =  
2.85 Z 112.7° 0.810 Z-38.1°y 

The constant noise circles, the stability circles and ropt are plotted in Figure 4-6. 

Under this condition, (4-14) is not satisfied so that the SNIM condition doesn't exist. It 

can be seen from Figure 4-6 as well that Fopt* is outside the input-referred load stability 

circle. It can also be observed that ropt is significantly away from rSjscM, which implies that 

the impedance matching needs to be compromised a lot to lower the noise figure. 
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Figure 4-6. Observation of constant noise circles, stability circles, ropt, rS>SCM, rL, SCM on Smith Chart. 

Since the circuit is unconditionally stable, the SCM condition exists. If the SCM is 

realized, the noise figure of the LNA is 4.53 dB, significantly larger than NFmin of 0.777 dB. 

The transducer gain is maximized to 26.0 dB. The noise measure can be calculated to be 

1.84. 

If noise match is realized at the input port, constant matching circles can be calculated to 

find optimized gain and matching levels. The input and output constant matching circles are 

plotted in Figure 4-7. 



www.manaraa.com

59 

Load Reflection Coefficient Plane 
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Figure 4-7. Constant matching circles on the load reflection coefficient plane. 

It can be observed from Figure 4-7 that the constant input matching circle of |Sn'| = -5 

dB tangent to the unity circle, which implies all the load impedances inside the unity circle 

lead to input matching levels worse than -5 dB. For the input matching of |Sn| = -3 dB, the 

best output matching is IS22I = -10 dB, giving a transducer gain of 19.6 dB while the noise 

figure is maintained at the minimum level. The noise measure can be calculated to be 0.198. 

However, an input impedance matching of-10 dB is usually required for the LNA design. 

Therefore this configuration will not be considered. 

With observation of the above cases, Ls and La are necessary to modify the LNA core 

circuit for optimization of the noise and gain match. 
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With Ls = La = 0.6 nH, the parameters of N0 are calculated as 

NFmi„ = 1.02 dB, Rn = 28.9 Q, ropt = 0.535 + j 0.506 

The S parameters are 

/0.760Z-43.3° 0.00685 Z83.90) 
m 2.20 A 66.0° 0.899 Z-37.20 

The constant noise circles and the input load stability circle are plotted in Figure 4-8. 

Smith Chart 

NF= 1.2 dB 
1.5 dB 
2.0 dB—• 

Unity Circle 

Figure 4-8. Observation of constant noise circles, stability circles, ropt, rs,ScM> rLjscM<>n Smith Chart. 

It can be observed from Figure 4-6 that the source stability circle (SSC) and the load 

stability circle (LSC) are out of the unity circle, which means that the circuit is 

unconditionally stable at this frequency. It can be also seen that ropt* is inside the input load 

stability circle, which implies the SNIM can be realized. I\SCM and FL,SCM for the SCM 
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condition are also plotted. It is obvious that rs,scM is not equal to ropt so that the noise match 

and the gain match cannot be realized simultaneously. An optimum IY might exist for an 

optimum impedance match that leads to a high gain. To achieve the condition of SNIM, IY = 

0.691 + j 0.549 that leads to an output matching of-3.01 dB and a transducer gain of 14.1 

dB, 3.1 dB lower than the maximum transducer gain of 17.2 dB. 

Load Reflection Coefficient Plane 

1 

0.8 

|Sn| = -15 dB 
0.6 

|S22| = -21.4 dB / 
-8.05 dB —fM ^ 
-5.83 dB ->\ N |Sn| = -20 dB 

0.4 

0.2 
Unity Circle |S111 —30 dB 

o 

0.4 0.6 0.8 0 0.2 

Figure 4-9. Constant matching circles on the load reflection coefficient plane. 

To further improve the transducer gain, the constant matching circles with the source 

admittance fixed to Yopt are plotted on the load reflection coefficient plane. It can be 

observed that for |Sn'| = -30, -20, -15 dB, the best achievable output matching is |S22'| = -5.83 

-21.4, -8.05 dB respectively. The corresponding transducer gains are 15.8, 17.1 and 16.4 dB 



www.manaraa.com

62 

respectively. The impedance matching of |Sn'| = -20 dB and IS22I = -21.4 dB gives an 

optimum transducer gain of 17.1 dB, only 0.1 dB lower than its maximum, while the noise 

figure is maintained at the minimum level. The noise measure is calculated to be 0.270. The 

corresponding IY is found to be 0.681 + j 0.531. The passive components of input and 

output matching networks at 5.3-GHz are: Cm = 0.277 pF, Lin = 1.96 nH, Cout = 0.179 pF, Lout 

= 2.44 nH, which are achievable in CMOS technology. 

4.4.3 Schematic Simulation Results 

The simulation results of S parameters, NF and gains are plotted in Figure 4-10,4-11 and 

4-12 respectively, where it is can be seen that the transducer gain is optimized to the 

maximum while the noise figure is maintained at the minimum level at the frequency of 5.3-

GHz. The performance of the LNA is summarized in Table 4-1. 

Table 4-1. Summary of the LNA performance in schematic simulation 

Frequency 5.3 GHz 

Power Supply 1.5 V 

Power Consumption 6.3 mW 

Noise Figure 1.0 dB 

Transducer Gain 17.1 dB 

|Si,| -20.0 dB 

IS22I -21.4 dB 

IPldB -9.5 dBm 
IIP3 -1.4 dBm 
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Figure 4-10. S parameters of the LNA with optimized noise and impedance matching. 
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Figure 4-11. NF and NF^ of the LNA with optimized noise and impedance match. 
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Figure 4-12. GT and GTmax of the LNA with optimized noise and impedance match. 
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Figure 4-13. Stability factor of the LNA with optimized noise and impedance match. 
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Figure 4-14. R„ of the LNA with optimized noise and impedance match. 
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Figure 4-15. r„pt of the LNA with optimized noise and impedance match. 
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4.4.4 Layout View and Post-Layout Simulation Results 

The circuit design is implemented using on-chip capacitors and inductors available in the 

TSMC 0.18-pm CMOS technology. The layout is shown in Figure 4-16. The post-layout 

simulation results of S parameters and noise figure are shown in Figure 4-17 and 4-18 

respectively. 

Bypass 
capacitor 

ductor 
Power 

1 

Indue 

Output 
pads 

Ground 

Figure 4-16. Layout view of the LNA in TSMC 0.18-fim CMOS technology. 
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Figure 4-17. Post-layout simulation results: S parameters of the LNA. 
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Figure 4-18. Post-layout simulation results: noise figure of the LNA. 
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4.4.5 Experiment Measurement 

The chip is fabricated in TSMC 0.18-pm CMOS process on a non-EPI wafer through 

MOSIS. The die photo is shown in Figure 4-19. Eight chips are measured. The measured S 

parameters are plotted in Figure 4-20. The S parameters at a frequency of 5.3 GHz of the 

eight chips are summarized in Table 4-2. 

Figure 4-19. Die photo view of the fabricated LNA in a 0.18-|xm CMOS technology. 
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Figure 4-20. Measured S parameters of the LNA versus post-layout simulation results. 

Table 4-2. Measured S parameters of eight chips at 5.3 GHz 

I (dB) i 
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I . 
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-9.5 
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-9.7 
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j |S22| 
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-8.9 
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-8.9 
1 

-8.9 
1 
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-9.0 
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Due to process variation, the impedance matching is shifted to a frequency lower than 

5.3 GHz. The average gain at 5.3 GHz is 5.2 dB. The average input and output impedance 

matching is -9.3 dB and -8.9 dB respectively. The average isolation is -42.8 dB. 

The schematic of the LNA is adjusted accordingly to fit the measured data. Extra lossy 

components are added because the measured gain is lower than the simulation result. The 

passive components are changed to be larger to account for the frequency shifting. The fitted 

S parameters are plotted in Figure 4-21. 

Fitted SI 1 

^ di 

Fitted S12 

4.2 4.4 4.6 4.8 5 5.2 
f (GHz) 

5.4 5.6 5.8 

Figure 4-21. Fitted S parameters of the LNA versus measured results. 

Due to the lab limitation on noise measurement, the noise performance of the fabricated 

LNA is estimated from the updated schematic simulation. The estimated noise figure of the 

corresponding LNA is plotted in Figure 4-22. It can be seen that the noise figure is about 1.7 



www.manaraa.com

dB larger than the data from the post-layout simulation because of the extra loss introduced 

in the circuit to model the lowered gain. 
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Figure 4-22. Estimated NF of the LNA versus post-layout simulation results. 

Table 4-3. Simulated and measured data at 5.3-GHz of the LNA 

Post-layout 
simulation 

Measurement 
results 

Frequency 5.3 5.3 GHz 

Power Supply 1.5 1.5 V 

Power Consumption 6.2 6.2 mW 

Noise Figure 3.1 4.8 * dB 

Transducer Gain 11.1 5.2 dB 

|Sn| -31.8 -9.3 dB 

IS22I -30.9 -8.9 dB 

IPldB -7.2 -2.0 dBm 

IIP3 1.3 3.4 ' dBm 

* Estimated from updated schematic simulation 
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4.5 Conclusions 

An optimization technique has been presented for optimization of noise and gain match 

by means of feedback and matching networks. Explicit formulas are given for computing the 

available impedance matching levels for optimization of the transducer gain while 

maintaining the minimum noise figure. Feedback tuning might be involved. This 

optimization technique together with the multi-port noise analysis approach is applied in the 

design of a 5-GHz LNA in a CMOS 0.18-pm technology. 

In on-wafer measurement, the fabricated LNA exhibits an averaged forward gain of 5.2 

dB with input and output impedance matching of -9.3 dB and -8.9 dB respectively, and 

isolation of -42.8 dB. The noise figure is estimated to be 4.8 dB from the updated circuit 

simulation. 
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CHAPTER 5. IMPEDANCE MATCHING NETWORKS 

5.1 Introduction 

Maximum power transfer, as mentioned in Chapter 4, occurs when the source impedance 

and the load impedance are conjugate matched to the input impedance and the output 

impedance respectively. In the transistor amplifier design, it is important to match the source 

impedance to the input impedance of the transistor to achieve a high power gain. In the 

design of low-noise amplifiers, it is important to transform the source impedance to the 

optimum source impedance to achieve minimum noise. The impedance matching can be 

realized using impedance matching networks. The impedance transformation may be for 

maximum power transfer, noise performance or other purposes. Impedance matching 

networks are of two types: narrowband and broadband. In this chapter only the narrowband 

impedance matching network will be explored because the LNA in this design is desired to 

be narrowband. Narrowband passive matching networks often consist of two or more 

reactive components. Based on the configurations formed by the reactive components, they 

are classified into three kinds: L-section, H-section and T- section, as shown in Figure 5-1 

[5.1]. For an L-section network, the 3-dB bandwidth is not a design parameter since only two 

components are used [5.1]. For a II- or a T-section network, it is possible to realize the 

transformation with control over the bandwidth. 

In circuit implementation of the passive matching networks, inductors and capacitors 

serve as the reactive components. In modern semiconductor technology, the integrated 

inductors and capacitors will experience different levels of process variation, perturbation 
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and temperature drift [5.2]. Equipment factors may result in lot-to-lot variation. In general, 

the on-chip impedance matching networks have to tolerate a large amount of process 

variation and thus have to be designed carefully to meet the yield requirement. 

jX, 
O 1 h 

jXz 

-o o-

o-

jXi 

{===] O 

-o o 

jX3 

(a) 

jXi jXg 
O C3 CZ 

(b) 

jx2 

(c) 

Figure 5-1. Passive impedance matching networks: (a) L-section, (b) II-section, (c) T-section. 

In the current design trend of SOC, many RF building blocks like LNA, mixer, and 

filters are integrated into one chip. Maintaining impedance matching between cascading 

stages becomes critical to maximize the power transfer and prevent oscillation. 

This chapter focuses on the study of the effect of process variation on several passive 

impedance matching networks. A process-variation insensitive (PVI) impedance matching 

network with matched components is presented. With ideally matched passive components, 

the impedance transformation is nearly immune to process variation. In reality, when passive 

components are mismatched, the PVI network has a low sensitivity to process variation. 
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Sensitivity analysis is carried out for the proposed network. Monte Carlo simulation is used 

to demonstrate the improvement of immunity to process variation as compared to a 

conventional L-section matching network. This approach can be extended to broadband 

impedance matching by cascading the proposed network. 

5.2 Process-Variation Insensitive Impedance Matching Networks 

5.2.1 Regular Passive Matching Networks 

A positive-real impedance can be transformed to any positive-real impedance by an L-

section matching network [5.3]. In an L-section, two pure reactive components, jXi and jXa, 

are utilized to realize either an upward or a downward transformation as illustrated in Figure 

5-2 below. Since the reactive components are ideal, no insertion loss will be experienced in 

this impedance transformation. 

Figure 5-2. An L-section matching network for impedance transformation: (a) L-section structure, (b) 
illustration of impedance transformation traces on Smith Chart. 

Any variation of the passive components in the L-section will cause the impedance 

transformation to deviate from the desired path, leading to a mismatch between the real and 

Zo 
(1,0) 

(a) (b) 
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the desired values. If the transformation is for maximum power transfer, the mismatch will 

lead to a lower power gain. If the transformation is for the noise match, the mismatch will 

degrade the noise performance. 

If the transformation is realized using the 1-step 1+Q2 technique, the two reactive 

components in an L-section could be an inductor and a capacitor [5.4]. As shown in Figure 5-

3, an L-section is used to transform a pure-resistive impedance, Ro, to another pure resistive 

impedance, R2. 

Ro C0: 

R2 

(-1,0) (1,0) 

(a) 

Figure 5-3. (a) 1-step 1+Q2matching using an L-section realization with a series capacitor and a shunt 
inductor, (b) illustration of transformation traces on Smith Chart. 

Application of 1+Q2 theory in [5.4] leads to 

R, 
R0 + jo)L0 

1 -co L0C0+ ja>C0Rc 
= (1 + 0)'%, (5-1) 

coL0 =QrRo (5-2) 

(5-3) 
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Sensitivities of R2 to the variations of the inductor and the capacitor can be found 

respectively as 

s^=dRx ,L ! L  =  j<** mi+g) 
at, R2  (R t+j0L,ll-a2L,C»+joC tR t)  (1 + jQ,)'  

c«2 _ 5^2, C0 _ L0c0 jcoC()R0 _ 

% gQ a, l-w%Co+;wCoao 

+sj =-ywc.iî, • a •+ a1 )+ •  1 + Q  ,  
^ Ci c„ "• t0 " & a+;e,)! 

Since the process variation mechanisms for on-chip inductors and capacitors are 

different, the matching performance will be dependent on two independent variables, i.e. 

variations associated with inductance and capacitance respectively. 

5.2.2 Element ofProcess-Variation Insensitive Matching Networks 

When an L-section matching network is involved in a circuit design, statistical analysis 

should be conducted in circuit simulation tools to ensure the circuit performance under 

process variation meet the design specifications and the yield requirement. Generally the 

matching network needs to be tuned to satisfy the yield requirement. 

As minimum process feature sizes shrink into the sub-micron (nanometer) range, more 

process variation will be experienced. Capacitance can vary up to ±20% for a metal-

insulator-metal (MIM) capacitor [5.2]. It is often the case that process variation will put 

stringent limits on circuit designs. A significant amount of design effort has been put into the 

design cycles to meet the yield requirement. Optimization techniques are commonly used to 
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search for the best solution. When optimization techniques cannot find a solution, 

introduction of new circuit architectures tolerating process variation is necessary. 

In many analog integrated circuit designs, high performance, such as low offset voltage, 

is achieved with a high degree of precision matching of passive and active devices [5.2]. 

Similar ideas can be employed in the design of impedance matching networks. 

Shown in Figure 5-4(a) is an L-section consisting of two capacitors. At an angular 

frequency of to, the shunt capacitor Ci transforms the source impedance Z0 to a pure-resistive 

impedance Ri while the series capacitor C2 transforms Ri to the objective impedance Z2. The 

transformation traces on the reflection coefficient plane are plotted in Figure 5-4(b), where it 

can be seen that Zo lies on the constant Qi circle and Z2 lies on the constant Q2 circle. 

Figure 5-4. (a) An L-section using two capacitors, (b) transformation traces on Smith Chart. 

Application of 1+Q2 theory in [5.4] leads to 

c 

c 

(a) (b) 

Z2 ~ Zo/(l + jcoCl • Z0 ) + \f{j(ùC2) (5-7) 

<yCi =Q\!R\ (5-8) 

<yC'2 ~ V(ô2 ' ̂ 1 ) (5-9) 
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Relations between Zo, Ri and Z2 are governed by 

Zo=a,/(wa) 

z2 = R x • (1 - jQ2 ) 

(5-10) 

(5-11) 

Sensitivities of Z2 to Ci and C2 are derived respectively as 

oZ2  _ 5Z2 C, 
dc, -

co2CiC2Z0 

dCl Z2 (l + jcoCx -Z(Jl + >(C, + c2 X ] 
(5-12) 

i+7<yCi Z0 

SC2 Z2 1 + j<y(C] + C2 )^?0 
(5-13) 

The relative variation of Z2 is given as 

^Z2 _ gz2 [ 5Z2 dC2 

Z
CI /-"• C2 y^> 

2 v—'j 2 
(5-14) 

Substitution of (5-8)-(5-l 1) into (5-12) and (5-13) leads to 

j,, = 
6C, Z2 

a 
nominal j + 
values 

(5-15) 

fz, =&.5_ 
' 8Q Z, 

& 
nominal j + 
values 

(5-16) 

If the capacitors Ci and C2 are ideally matched to each other and lie on the same Q circle, 

we have 

dCi / C, =dC2/C2 (5-17) 

a = a  ( 5 - i 8 )  

Substitution of (5-15)- (5-18) into (5-14) leads to 
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^2 _ gz2 dC\ | dC2 _ Q\ Q2 dCx _ Q 
4 S q % Q ; + & C, 

(5-19) 

From (5-19) it can be seen that Z2 has a zero sensitivity to capacitance variations if the 

proposed network satisfies (5-8), (5-9), (5-17) and (5-18). The zero sensitivity comes from 

the variation cancellation mechanism. When Ci experiences a positive deviation from the 

nominal value, its susceptance will be increased. Correspondingly, on the reflection 

coefficient plane, its transformation trace will be longer. Ideally matched C2 will experience 

the same rate of change, resulting in a smaller reactance and a shorter transformation trace on 

the reflection coefficient plane, which compensates the change caused by Ci and thus 

maintains the length of the total transformation traces. 

5.2.3 Process-Variation Insensitive Matching Networks 

The one-step impedance transformation using a single L-section in Figure 5-3 can be 

broken into two L-sections of the same Q factor to implement the element of PVI network. A 

two-step impedance matching network with two L-sections of alternating passive 

components is shown in Figure 5-5. 

Application of 1+Q2 theory in [5.4] leads to 

(5-20) 

coL\ — Q2 • R0 (5-21) 

1 _l + 0 
(5-22) 

(oC\ Q2 

1 
a(i+0).a* (5-23) 

coC2 
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Ro 

(a) (b) 

Figure 5-5. (a) A PVI network with two L-sections, (b) transformation traces on Smith Chart. 

= (5-24) 

If the capacitors and the inductors are ideally matched to each other respectively, we 

have 

(5-25) 
C, C2 

dLx 

A L 2  
(5-26) 

Denote the output impedances of the two-step impedance matching network looking left 

before and after L2 in Figure 5-5 respectively as 

Z2 = f° +j0)Ll + —— (5-27) 
l-coLlCl + ja>C]R] jcoC. 2 

Z3 = (5-28) 
Z2 + j(oL2 

Sensitivities of Z2 to Ci and C2 are derived as 

pz, _ dZ2 Cl _ o) ClC2(R0 +jo)Ll) (5-29) 
dC, Z2 (l-û)2C,I, + jcoCxRa\ A 
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5*1 = .5. = _! ft>2C,A + j(àC\ R0 (5_30) 
6Q Z; /f 

Sensitivities of Z3 to L% and L2 are derived as 

where 

= (5-32) 
^ 61, Z, ^ + B 

A — 1 — Û)2 (C, + C2 )Z| + jco{C\ + C2 )j?0 (5-33) 

B = -co2C2L2 + œ4C,C2L,L2 - jco'C.C^Ro (5-34) 

Denote the summation of S1,?2 and and as Sp and Sf3 respectively. 

Substitution of (5-21)-(5-24) and (5-29)-(5-32) into S^2 and S^3 leads to 

=  ^ + % = 0  
nominal 
values 

(5-35) 

^ = < ' + 3 2 = 0  nominal 
vaules 

(5-36) 

The relative variation of Z3 is obtained as 

d%3 _ dCx + ^,z3 z, ^2 

C, +  S f f - + S J  
v 2 ivj -1^2 

az, z^ ^ az% (/Q ^ az2 

dZ2 Z3 ^ac, Zz 6Q Z, y 

dL1 

I, 

(5-37) 

Substitution of (5-25), (5-26), (5-29)-(5-32) into (5-37) leads to 

^L = ̂ ±^2..Sz2 .^£l + SÏ2 

z, az, z, c, 

dL{ 
— 0 nominal 

ideal values 
matching 

(5-38) 
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Therefore with the condition of ideal matched passive components, Z3 has a zero 

deviation to process variation at nominal values because of the cancellation mechanism 

mentioned before. 

By using the 2-step matching in Figure 5-5 instead of 1-step matching shown in Figure 

5-3, another immediate advantage is the lowered Q that leads to relaxation on bandwidth. 

5.2.4 Implementation of PVI networks 

The proposed network can be implemented to realize narrowband impedance matching 

from an arbitrary source impedance to any objective impedance. Denote the source and 

objective impedances respectively as Zo and Z%, we have 

Zo=^+y%q=^'||;^' (5-39) 

Z, =^11./^' (5-W) 

If Ro < Rz', the network in Figure 5-6 can be used to transform R0+/X0 to R2' || 7X2', 

where the transformation from Ro to R2' is broken into two equal-Q steps to implement the 

PVI network. Application of 1+Q2 theory in [5.4] leads to 

Rx=4RX (5-41) 

1 + 52=V^% (5-42) 

The first component can be a capacitor or an inductor, depending on the sign of its 

reactance of y'{QRo-X0). The second component is a capacitor of which the reactance is equal 

to -y' Ri/Q. The third is a capacitor of which the reactance is equal to -j- Q Ri. The fourth can 

be a capacitor or an inductor, depending on the sign of its reactance of j Ri'/Q ||y'X2'. 
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Figure 5-6. (a) Realization of the PVI network, (b) illustration of transformation traces on Smith Chart. 

If Ro > Rz', then Ro' > Rz because Ro' > Ro and Rz' > R2. The given network can be used 

to transform Rzt/Xz to Ro' ||yXo'. 

5.3 Monte Carlo Simulations of PVI Matching Networks 

5.3.1 Comparison for Ideal Cases 

An example of matching 50 Q to 100 Q at a frequency of 5.3 GHz is used to demonstrate 

the performance improvement from an L-section network to the proposed PVI network. 

These two involved networks are shown in Figure 5-7 with the passive component values 

summarized in Table 5-1. The Q factors of these two networks are 1 and 0.644 respectively. 

The L-section consists of a series inductor and a shunt capacitor. Another configuration with 

a series capacitor and a shunt inductor can be used but it has similar properties, so only one 

configuration is included in this example. 
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Lo Li C2 

(a) (b) 

Figure 5-7. Comparison between (a) an L-section network, (b) the PVI network. 

Table 5-1. Summary of passive component values used in the matching networks 

L-section network PVI network 

Co Lo Qo c, L, c2 l2 Qi 

300.3 1.501 1.00 273.3 0.9663 659.9 4.666 0.644 

fF nH fF nH fF nH 

The process variations of capacitors and inductors are assumed to be of a Gaussian 

distribution with a mean (jj.) of 0 and a standard deviation (<r) of 0.06 so that virtually all the 

component variations are within ±20% range of the nominal values. The Gaussian 

probability density function (PDF) is shown in Figure 5-8. The capacitors and the inductors 

in the PVI network are assumed to be ideally matched to each other. 

The reflection coefficient F2 of the output impedance Z2 of each network is used as a 

measure of the impedance transformation. f2 and T2' are evaluated using normalization 

impedances of 50 G and the nominal value of R2 respectively. The nominal values for T2 and 

ry are 0.333 (-9.54 dB) and 0 (-00 dB) respectively. 
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Figure 5-8. Gaussian probability density function of passive component variations. 

r 
2 Z2+ 50 

p ,  _  z 2  ~r 2  

Z2 + R2 

(5-43) 

(5-44) 

The distributions of F2 for all combinations of variations of capacitors and inductors are 

plotted in Figure 5-9, where it can be seen that F2 of the L-section network can vary from 

0.25-J0.05 to 0.45+J0.14 while F2 of the PVI network is confined into a significantly smaller 

area. The constant matching circles of |F2'| are plotted in Figure 5-9 as well. It can be seen 

that most of F2' of the L-section fall inside the -15-dB circle while most of F2' of the PVI 
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network fall inside the -30-dB circle. Therefore the L-section network experiences a 

significantly larger variation than the PVI network. The probability density function and the 

cumulative distribution function (CDF) of |F2| are plotted in Figure 5-10 and 5-11 

respectively. 

r2, normed to 50 ohm 

L-section region 

-15 dB 

= -20 dB 

-25 dB 

= -30 dB 

-35 dB 

40 dB 

-0.15 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Real (r2) 

Figure 5-9. Distributions of F2 for the L-section and the PVI network. 
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Figure 5-10. Probability density functions of |r2| for the L-section and the PVI network. 

r -X- L-section 
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nnrpnq^nn^ _Q 

T, (dB) 

Figure 5-11. Cumulative distributions of |F2| for the L-section and the PVI network. 
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|r2'| of different inductor and capacitor variations for the L-section network and the PVI 

network are plotted in Figure 5-12. The probability density and cumulative distribution 

functions of |IY| are plotted in Figure 5-13 and 5-14 respectively. 

L-section, normed to R2 

-0.1 

PVI network, normed to R„ 

-0.2 

-0.2 -0.1 0 0.1 0.2 
dC1 & dC2 

Figure 5-12. |r2'| of different inductor and capacitor variations for the L-section and the PVI network. 
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Figure 5-13. Probability density functions of |F2'| for the L-section and the PVI network. 

innmmni 

0.9 

-X- L-section 
-B- PVI network 

0.8 

0.7 

0.6 

S 0.5 

0.4 

0.3 

0.2 

-40 -30 -20 -10 -50 -101 

ry (dB) 

Figure 5-14. Cumulative distribution functions of |r2'| for the L-section and the PVI network. 
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From Figure 5-10 and 5-11, it can be seen that |I^| of the L-section spans from -11 dB to 

-7 dB while |F2I of the PVI network is concentrated at the nominal value of -9.5 dB. If the 

network is used to match 50 Q to 100 Q, |f^'| can be used to represent the matching level. 

From Figure 5-12, |IY| of the PVI network is small than that of the L-section for the same 

inductor and capacitor variations, it can be seen From Figure 5-13 and 5-14, it can be seen 

that |ry| of the L-section is distributed around -25 dB while |r2'| of the PVI network is 

distributed around -50 dB. Therefore by using the PVI network, the variation of the 

impedance transformation is confined into a small region thus the matching level can be 

maintained. 

5.3.2 Monte Carlo Simulations for the real-world cases 

The above case is analyzed under ideal conditions. In reality, when the PVI network is 

realized in the circuit design, the capacitors and the inductors cannot be ideally matched to 

each other [5.2]. Mismatch between capacitors does exist though it can be minimized through 

special layout techniques [5.2]. The integrated on-chip inductors cannot be matched to each 

other because unlike the capacitors, they cannot be divided into several sub sections since 

that will increase the capacitance parasitics and result in a lower resonant frequency and 

other disadvantages. In addition, in order to improve isolation, they cannot be put close to 

each other. 

To incorporate the mismatch between the passive components, the Monte Carlo 

simulator in circuit design tools is utilized to evaluate the L-section and the PVI network in 

Figure 5-7. The mismatch between capacitors is assumed to be of Gaussian distribution with 

a three-sigma figure of 3%. Inductors are considered correlated since they are likely to 
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experience similar process variation under the same manufacturing condition. The correlation 

coefficient is assumed to be 0.4. 

There are four cases considered in the Monte Carlo simulation as 

1) L-section: the one-step L-section network as shown in Figure 5-7(a), 

2) PVI worst-case: the PVI network as shown in Figure 5-7(b) with independent passive 

components, 

3) PVI real-case: the PVI network as shown in Figure 5-7(b) with mismatched capacitors and 

partially correlated inductors, 

4) PVI ideal-case: the PVI network as shown in Figure 5-7(b) with ideally matched 

capacitors and inductors. 

The probability density functions of the capacitors and inductors generated in the Monte 

Carlo simulation are plotted in Figure 5-15. The distributions of F2 and the cumulative 

distributions of IY based on ten thousand samples in each case are plotted in Figure 5-17 and 

Figure 18 respectively. The statistical properties of the PVI networks are compared to that of 

the L-section network as shown in Table 5-2. 

(a) (b) 
Figure 5-15. Probability density distributions of (a) capacitors, (b) inductors. 
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Figure 5-16. PDFs of |F2| in Monte Carlo simulations for the L-section and the PVI network. 
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Figure 5-17. CDFs of |r2'| in Monte Carlo simulations for the L-section and the PVI network. 
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Table 5-2. Statistical properties of the PDFs of |r2| 

for the L-section and the PVI network 

Statistics L-section PVI network 

Worst-case Real-case Ideal-case 

y(dB) -9.57 -9.51 -9.50 -9.51 

a (dB) 0.697 0.572 0.108 0.049 

Min (dB) 
-12.5 

(81.1 Q) 
-11.7 

(85.1 Q) 
-9.91 

(97.0 O) 
-9.54 

(100.0 Q) 

Max (dB) 
-7.40 

(124.4 f2) 
-7.44 

(123.8 Q) 
-8.82 

(106.8 Q) 
-9.02 

(104.8 Q) 

Span (dB) 
5.1 

(43.3 Q) 
4.3 

(38.7 Q) 
1.1 

(9.8 Q) 
0.5 

(4.8 Q) 

Table 5-3. Cumulative distributions of |r2'| for the L-section and the PVI network 

|r3'l L-section PVI network 

Worst-case Real-case Ideal-case 

-80 dB 0.2% 0.3% 1.6% 20.5% 

-70 dB 0.7% 0.8% 5.1% 35.7% 

-60 dB 2.5% 2.8% 16.2% 59.0% 

-50 dB 8.0% 10.0% 49.4% 85.9% 

-40 dB 26.4% 31.3% 95.3% 98.9% 

-30 dB 71.0% 79.6% 100.0% 100.0% 

-20 dB 99.9% 100.0% 100.0% 100.0% 

-10 dB 100.0% 100.0% 100.0% 100.0% 

From Figure 5-16 and Table 5-2, it can be seen that in the PVI ideal case, r2 is 

concentrated around the nominal value with a very small spread of 0.049 dB. 

Correspondingly, the impedance variation span is 4.8 Q for component variations up to 

±20%. In the PVI real case, r2 is still centered around the nominal value but with a spread 
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two times larger and correspondingly an impedance variation span of 9.8 Q, while in the PVI 

worst case and the L-section case, r2 suffers from a significantly larger spread with 

impedance variation spans of 38.7 £2 and 43.3 Q respectively. The passive components in the 

PVI worst case in the Monte Carlo simulation are very weakly correlated to each other, 

contributing to a slight better performance than that of the L-section. 

From Figure 5-17 and Table 5-3, it can be seen that in both the PVI ideal and real cases, 

over 95% of the samples are matched better than -40 dB, equivalently within ±2% range of 

the desired value R2. Only 26.4% of the samples in the L-section case and 31.3% in the PVI 

worst case reach to -40-dB matching level. 

From the simulation results it can be concluded that the proposed PVI matching network 

with matched components can lead to a significant improvement in immunity from process 

variation for on-chip impedance matching. 

A further Monte Carlo simulation reveals how the matching ratio between passive 

components affects the performance of the PVI network. In this Monte Carlo simulation, the 

capacitors are assumed to be independent, mismatched and matched respectively. The 

inductors are assumed to be independent, correlated and matched respectively. The mismatch 

ratio and the correlation coefficient remain the same. Thus, there are in total nine different 

cases for the PVI network, which is summarized in Table 5-4. The L-section case is 

considered as case 1 in Table 5-4. 

The mean values and the standard deviations of these ten distributions are summarized in 

Table 5-5. The standard deviations are plotted in Figure 5-18. The distribution of F2 for the 
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L-section is plotted in Figure 5-19. The distributions of T2 for all nine combinations are 

plotted in Figure 5-20. 

From the simulation data, it can be observed that the means of |F%| for all ten cases are 

close to the nominal value of -9.5 dB. Therefore, a smaller standard deviation represents a 

better performance of impedance matching under process variation. 

It can be seen that the L-section case 1, with the largest standard deviation, has the worst 

performance, while the performance of cases 2 to 10 is primarily dependent on capacitor 

matching properties. Matched-capacitor cases 8-10, with the smallest standard deviations, 

have the best performance. Mismatched-capacitor cases 5-7, with medium standard 

deviations, have fair performance. Independent-capacitor cases 2-4 are among the worst. 

Capacitor matching ratio dominates the performance while the inductors play a minor role. 

Therefore, a PVI network with precision matching capacitors will significantly improve the 

immunity of impedance matching to process variation. 

Table 5-4. Case numbers of all combinations of variations 

^~~~~-~~___Capacitor PVI network 
Inductor Independent Mismatched Matched 

Independent 2 5 8 

Correlated 3 6 9 

Matched 4 7 10 

L-section 1 

Table 5-5. Mean values (|x) and standard deviations (•) of all ten cases 

Cases 1 2 3 4 5 6 7 8 9 10 

(dB) 
-9.558 -9.502 -9.506 -9.513 -9.498 -9.500 -9.510 -9.496 -9.501 -9.508 

(dB) 
0.697 0.591 0.581 0.576 0.115 0.108 0.101 0.056 0.051 0.050 
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Figure 5-18. Standard deviations of |F2| for the simulated ten cases. 

Figure 5-19. Distributions of Fz for the L-section. 
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Figure 5-20. Distributions of Fi of all nine combinations of variations for the PVI network. 
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5.4 Conclusions 

In this chapter, a PVI impedance matching network is proposed and verified in 

simulation. This structure significantly improves the circuit immunity to process variation. 

The PVI network utilizes precision matching capacitors. Therefore, the layout design is 

critical to realize the process-variation independence. Matching between capacitors and 

inductors should be carefully examined. 

The structure will involve more passive components and thus consume more area. In 

addition, by switching from one-step matching to two-step matching, the inductance, if used 

in shunt, will have a high value, which leads to higher requirement, i.e. higher Q, for the on-

chip inductors. However, enhancement in the yield will likely compensate for these 

limitations. 
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CHAPTER 6. CONCLUSIONS 

6.1 Summary 

In Chapter 3 a multi-port noise analysis approach based on the well-known two-port 

noise theory is presented to explore the noise behavior of MOSFETs. An explicit formulation 

is given for a three-port-to-two-port noise transformation to anticipate how the source 

degeneration inductor changes the two-port noise parameters. This approach is applied in the 

design of a 5.3-GHz CMOS LNA to achieve a simultaneous noise and gain match. 

Theoretical implementation of the circuit gives a 1.02-dB NF and a 17.1-dB gain with the 

circuit drawing 4.2 mA from a 1.5-V power supply. 

In chapter 4, a new design approach on optimization of the impedance matching of an 

LNA is presented. This approach considers both input and output impedance matching to 

achieve a high gain performance. Using this approach and the multi-port noise analysis, the 

feedback of the 5.3-GHz LNA is optimized and the circuit is implemented in a CMOS 0.18-

pm process. The measurement gives a gain of 5.2 dB at 5.3 GHz. The maximum measured 

gain is 7.2 dB. The nominal input and output impedance matching levels are -9.3 dB and -

8.9 dB respectively. The nominal isolation is -42.8 dB. The noise figure is estimated to be 

4.8 dB from the updated simulation. 

From measurement data it is observed that the impedance matching is shifted to a lower 

frequency due to the variations of the passive components in the matching network. A PVI 

network is proposed to better tolerate the process variation. The PVI network utilizes the idea 

of precision matching to achieve a cancellation of variation. Sensitivity analysis reveals its 



www.manaraa.com

102 

high immunity to process variation. The improvement from a regular L-section network to 

the PVI network is demonstrated in Monte Carlo simulations. 

6.2 Conclusions 

The presented theoretical analysis and design methodologies contribute to different areas 

in the field of RFIC design. 

It is demonstrated in Chapter 3 that a three-port approach is necessary to fully 

characterize a three-terminal MOSFET. Three-port S parameters are needed to model the 

linear features of a MOSFET when all of its three terminals are not grounded. A three-port 

noise matrix is needed to characterize the noise behavior of a MOSFET accordingly. 

By means of multi-port noise analysis, the feedback effect on the two-port noise 

parameters can be analyzed accurately. The multi-port noise analysis also provides a method 

to study the effect of multiple feedback on noise performance. 

The procedure of how to extract a multi-port noise matrix from two-port noise simulation 

suggests a way to incorporate multi-port noise simulation in current circuit simulation tools 

so that multi-port analysis can be supported. 

The optimization technique discussed in Chapter 4 provides an analytical solution to 

design an LNA to meet multiple design goals of noise, gain, and impedance matching. This 

technique considers simultaneously multiple goals in tuning feedback to achieve an optimum 

solution. Since only S and noise parameters are needed, it is a generic approach that can be 

applied to many other semiconductor technologies. 

The novel PVI network proposed in Chapter 5 utilizes a simple structure to achieve on-

chip impedance matching that tolerates process variation. While currently impedance 



www.manaraa.com

103 

matching of many applications is realized using external matching networks, this technique 

provides a suitable solution for higher level of integration by eliminating external matching 

networks. More passive components are used. Therefore, the die area is increased. However, 

the board area is reduced. 

6.3 Recommendations for Future Work 

There are various challenging issues that need to be addressed in future research. Current 

noise characterization of MOSFETs in testing is generally a two-port approach. As suggested 

in Chapter 3, a multi-port noise matrix is necessary to fully characterize a multi-port network. 

Three-port noise characterization is suggested to improve the noise modeling of a MOSFET 

or other three-terminal active devices. 

The performance of a PVI network relies largely on the capacitor matching ratio. High 

precision matching capacitors are recommended. Further studies can be carried out on how to 

realize highly matched capacitors in high frequency domain. Inductors of high Q factor are 

important to maintain matching performance because on-chip inductors usually have many 

parasitic components, which will degrade the immunity of a PVI network. Theoretical 

analysis can be extended to study the effect of parasitics on sensitivities of the PVI network. 
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